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Abstract — Moving Average process of order q (MA(q)) is a 
dynamic time series model useful in modelling economic and 
financial series, where normality assumption of the error term 
is taken for granted. However, most real data are skewed and 
contains outliers which violate this assumption. This work 
developed the theoretical framework that modified the 
conventional Moving Average model to assume asymmetric 
error innovation, capable of characterizing both normal and 
non-normal time series data. Both simulated and real data is 
used to validate the proposed model. The proposed model was 
compared with conventional MA models using model order 
determination and forecast evaluation tools. The results 
showed that MA(2) with exponential power error innovation 
had lower AIC value (-157.76) when compared with the 
conventional normal error innovation with AIC= 5.73 and 
MAE value of 0.2031and 0.6898 for MA with exponential 
power error innovation and conventional normal error 
innovation respectively. It is established in that the moving 
average model with exponential power error innovation 
performed better in terms of modelling and forecast 
performance that the moving average model with 
normal error innovation. 

Keywords- Moving Average model, Outliers, Normal error 
innovation, and Asymmetric error innovation 

. 
i. Introduction  

Moving average of order q is a linear process with finite time 
domain and its shocks which occur in past periods down to 
lag q are each assigned values. The process does not assign 
value to the shock that is coming from the present time. The 
present shock is a random shock that could attain any 
unpredicted value due to inadequate information presented. 
Therefore, an expectation of a current shock should be 
formed based on the information available along with the 
knowledge of previous shocks as determined by lag q in 
order to specify the model properly. 

Moving average process is a time series model that has long 
found it uses in modelling returns series of economic series 
in the financial world. Analyst and investment advisors have 
recommended it as a tool that could either furnish predictive 
probabilities for security price movements or aid in 
minimizing losses. Since Moving average is based on past 
shocks, it smoothed the price data to form a trend, predict 
price direction. Thus moving average process helps smooth 
financial returns and filter out the noise [1].  

Estimating the parameters of MA model is usually more 
difficult especially if the zeros are located close to the unit 
circle, past works have considered ways to solving this 
problem and four methods reviewed were Durbin’s Method 
(DM) [2], Inverse Covariance (or Correlation) Method 
(ICM) [3], the Vocariance Recursion Method (VRM) and 
Vocariance ESPIRIT Method (VEM) [4,5]. 

The prominence of developing robust techniques for 
empirical analysis is of importance since the recent global 
financial crises in 2008 which has placed economic and 
finance theories under the spotlight [6]. The classical 
statistical tests follow normality assumption but significant 
skewness and kurtosis have indicated that real world data 
are not normally distributed as a result of the presence of 
outliers in the data set and the selection of a proper model is 
extremely important as it reflects the underlying structure of 
the series. Time series analysis is the procedure of proper 
modelling of a time series [7].  

An outlier defined as an observation that is distant from 
other observations [8]. [9] was the first to have explicitly 
considered method of analysis of outliers in time series. An 
outlier can occur by chance in a series but they often indicate 
skewness in the data set. A data set exhibiting significant 
skewness or kurtosis has values of data that occur at 
irregular frequencies, the mean, median and mode will occur 
at different points. For a data set having significant 
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skewness and kurtosis, Box-Cox transformation can try to 
normalize it if moderate right skewness is observed by 
taking log or square root of a data set.  Another approach is 
to use techniques based on error innovations other than the 
normal. For example, in reliability studies, the exponential 
power error innovation, weibull and log-normal distribution 
are typically used as a basis for modelling and the mentioned 
innovation belong to the family of asymmetry error 
innovation.  

Estimators capable of coping with non-normality in data set 
are said to be robust, therefore it is of utmost significance to 
find the relevant and robust statistical measures that can 
consider asymmetries in any given data sets so as to ensure 
precise and accurate forecast are obtained. 
 

II. MATERIALS AND METHODS 

Linear models have drawn much attention due to their 
relative simplicity in understanding and implementation of 
time series process. The two widely used linear time series 
models considered are Autoregressive (AR) and Moving 
Average (MA) models [10]. The mixture of these two 
models gives many other models namely Autoregressive 
Moving Average (ARMA) and Autoregressive Integrated 
Moving Average (ARIMA) [10, 11]. Autoregressive 
Fractionally Integrated Moving Average (ARFIMA) model 
was used to generalize ARMA and ARIMA models [12]. 

The moving average model used for this research was 
adapted from [10]. It was represented by the systematic 
component that is generated as a weighted average of 
random disturbances of past periods.  

Let Xt be a response variable assuming MA(q) process 
defined as 

Xt = µ + Ԑt + θ1 Ԑt-1 + θ2 Ԑt-2 +···+ θq Ԑt-q,  

where Ԑt i.i.d. ∼ N (0, σ2) 

Where θ1, θ2,…….θq are the parameters of the model which 
can be either positive or negative.  

Ԑt is a white noise process with E(Xt) = 0 and Var(Yt) = 
σ2Σθi

2 , θ0 = 1 

and 1+ θ1
2+…+ θq

2<∞. It is always invertible for all values 
of θ1, θ2, …, θq. Thus, MA model only require for invertibility 
condition not stationarity. N this study, we consider the 
Moving Average of order two (MA(2)). 

Parameter Estimation of Moving Average Model with 
Normal Error Innovation 

Moving Average of order two (MA2) is given as 
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Taking the log-likelihood function of (4), differentiating 
with respect to θ1, θ2, σ2 and equating each to zero to obtain: 
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To obtain the parameter σ2 we have 
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Parameter Estimation of Moving Average Model with 
Exponential Power Error Innovation 

The most prominent and widely used family of skewed 
probability distribution is the exponential power 
distribution. The distribution that was first discussed by [13] 
as well as the Bayes inference have been used in signal 
processing field and in image processing [14].  

The probability distribution function of exponential power 
error innovation is given as 

t
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 This family of distribution allows for tails that are either 

heavier than normal (when   <2) or lighter than normal 

(when   >2), where   is a shape parameter. The 

parameter estimate is done by method of maximum 
likelihood and the method of moments. The estimates do not 
have a closed form and must be obtained numerically. 

If Xt follow moving average model of order 2, then  

 Xt = µ + Ԑt + θ1 Ԑt-1 + θ2 Ԑt-2   

     

We will use exponential power error innovation because 
moving average model is usually white noise, we then have: 
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By substituting the mean equation, we have 

  

t

1 t-1 2 t-2
  - 

[ ]
f( )                                          (10)

2 1

tx

e
   




 








 

The log-likelihood gives 
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Differentiating equation (11) with respect to θ1, θ2, σ, β and 
equating to zero 

to have 
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There is no closed form solution to (16) above therefore, it 
was solved numerically. 

III. RESULTS AND DISCUSSION 

Data were simulated for samples of sizes 50, 100, 200, 500 
and 1000 and Nigeria Stock Exchange data from January, 
1996 to May, 2017 were used to validate this model while 
R-package was used to analyse the data. Two sets of data 
were simulated, one set was simulated with random error 
innovation while the other set was contaminated with 
outliers randomly. 

Simulated data (one outlier) 

The descriptive statistics of the uncontaminated and 
contaminated data sets are reported in Table 1, while the 
order determinant and forecast performance of the MA 
model are given in Table 2 after modelling the simulated 
series. The results revealed that uncontaminated data sets 
are normally distributed but the contaminated data sets have 
positive skewness and tails and are therefore skewed. Also, 
AIC of the MA(2) with exponential power error innovation 
are lower when compared to MA(2) with normal error 
innovation. Fig. 1 presents the plots of simulated data for 
uncontaminated and contaminated data set of size 50. The 
plots confirm that uncontaminated data are normally 
distributed while the contaminated data is not. 
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Table 1: Descriptive statistics for uncontaminated and contaminated data (one outlier) 

Sample Size Uncontaminated Data Sets Contaminated Data Sets 

Skewness Kurtosis Skewness Kurtosis 

N = 50 -0.1085 

-0.0542 

0.0356 

0.1396 

-0.0151 

-0.4577 2.8862 

2.5490 

1.7966 

1.1562 

0.4680 

13.76 

N = 100 -0.5644 15.17 

N = 200 -0.5127 11.64 

N = 500 -0.0559 8.04 

N = 1000 0.1070 3.75 
 

Table 2: Model Order Determinant and Forecast Performance of MA(2) model (with one outlier) 

Sample Size 
 Uncontaminated Data Sets Contaminated Data Sets 

 σ2 AIC MAE σ2 AIC MAE 

N = 50 
NEI 1.019 159.17 0.5712 2.637 212.74 0.9893 

EPEI 3.18 e-04 159.17 0.5712 0.2991 32.20 0.1242 

N = 100 
NEI 1.067 361.08 0.5063 1.944 447.66 0.7619 

EPEI 0.0009 361.08 0.5063 0.0113 192.32 0.2014 

N = 200 
NEI 1.087 850.16 0.4842 1.629 846.93 0.4537 

EPEI 0.0083 850.16 0.4842 0.0063 500.11 0.2002 

N = 500 
NEI 0.8796 2661.42 0.5094 1.057 2703.72 0.5314 

EPEI 0.0787 2661.42 0.5094 0.1075 2388.73 0.3787 
Note: NEI stands for Normal Error Innovation and EPEI stands for Exponential Power Error Innovation

 

Figure1. Time plots for one outlier when N = 50: a) uncontaminated data set, b) for contaminated data set 
Simulated data (two outliers)  
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The result shown in Table 3 summarizes the statistics after 
modeling. It revealed that contaminated data sets are highly 
skewed with high kurtosis. The skewness was reducing as 
the sample size increases. Table 4 gave lower values of AIC 
and MAE for contaminated series with exponential error 
innovation over normal error innovation while both error 
innovations gave same value of AIC and MAE for 

uncontaminated for sample sizes 50, 100, 200 and 500 
considered. Fig. 2 presents the plots of simulated data for 
uncontaminated and simulated data set of size 200. The plots 
confirm that uncontaminated data are normally distributed 
but contaminated data contain outliers

 

Table 3: Descriptive statistics for uncontaminated and contaminated data (two outliers) 

Sample Size 
Uncontaminated Data Sets Contaminated Data Sets 

Skewness Kurtosis P-Value Skewness Kurtosis P-Value 

N = 50 -0.1085 

-0.0543 

0.0356 

0.1396 

-0.0151 

-0.4577 0.6788 2.6454 

2.5907 

2.0076 

1.3540 

0.5968 

9.6673 7.19e-08 

N = 100 -0.5644 0.5189 12.6299 2.55e-10 

N = 200 -0.5127 0.4852 11.2459 8.57e-12 

N = 500 -0.0559 0.2776 8.5424 2.25e-14 

N = 1000 0.1070 0.4053 4.2428 4.21e-13 
 

Table 4: Model Order Determinant and Forecast Performance of MA(2) model (two outliers) 

Sample Size 
 Uncontaminated Data Sets Contaminated Data Sets 

 σ2 AIC MAE σ2 AIC MAE 

N = 50 
NEI 1.019 159.17 0.5712 3.469 198.70 0.8459 

EPEI 0.0058 159.17 0.5712 0.0013 38.51 0.1350 

N = 100 
NEI 1.067 361.08 0.5063 2.378 402.36 0.5991 

EPEI 0.0128 361.08 0.5063 0.0117 116.56 0.1269 

N = 200 
NEI 1.087 850.16 0.4842 1.852 877.81 0.4840 

EPEI 0.1000 850.16 0.4842 0.0059 628.72 0.2506 

N = 500 
NEI 0.8796 2661.42 0.5094 1.138 2717.44 0.5373 

EPEI 0.1131 2661.42 0.5094 0.1000 1137.87 0.1062 
Note: NEI stands for Normal Error Innovation and EPEI stands for Exponential Power Error Innovation 

 

Figure2. Time plots for two outliers when N = 200: a) uncontaminated data set, b) for contaminated data set 
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Real Data 

Table 5 summarizes the descriptive statistics of the Nigerian 
stock exchange data. It can be seen that the data is highly 
skewed with heavy tail and leptokurtic. Hence the data is not 
normally distributed. Table 6 presents the result after 
modelling the data. The AIC for MA(2) with exponential 
power error innovation is lower than MA(2) with normal 
error innovation and this supports the notion that most real 
life data are not normally distributed. Fig. 3 presents the 
plots of stock exchange data of size 257. The plots confirm 
that real life data are contaminated.  

Table 5: Descriptive statistics for stock exchange data 

Sample Size 257 

p-value <2.2e-16 

Skewness 3.7891 

Kurtosis 23.3558 

 

Table 6: Criteria result of normal and non-normal error 
innovation for stock exchange data when N = 257 

 Normal Error 
Innovation 

Exponential Power 
Error Innovation 

σ2 1177.79 0.0458 

AIC  1519.32 893.34 

MAE 0.6898 0.2031 

 

Figure 3:  plot of stock exchange data when N = 257 

IV. CONCLUSION 

The Moving average model of order 2 with non-normal error 
innovation performed better in terms of lower model 
performance tools (AIC) than that with normal error 
innovation for both simulated and real data sets. Also, the 
forecast performance is better with power mean absolute 
error of forecast. It has been established in this study that 
whether the series is normally distributed or asymmetric, the 
moving average model with exponential power error 
innovation performed better in terms of modelling and 
forecast performance that the moving average model with 
normal error innovation. 
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