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Abstract - In this article, test procedures for multiple 
comparisons with a control under unequal variance was 
investigated. An algorithm for estimating the sample 
variances in the presence of heteroscedasticity. In this 
algorithm, a weight that is a function of Mahalanobis 
distances is used to down weight the influence of 
heteroscedasticity before conducting the multiple 
comparisons test. The merits of the proposed procedures 
alongside other alternatives is examined through a Monte 
Carlo Simulation experiment by computing the family-wise 
error rate at a specific nominal level, �. The result of the 
experiment indicates that conventional procedures assuming 
equal variance will have inflated error rate and may yield 
misleading inferences when the assumption of equal variance 
fails. The Monte Carlo simulation experiment also reveals 
that the proposed procedures always control the family-wise 
error rate at a specific nominal level , while some 

established procedures are liberal and have inflated error 
rate in some scenarios. 

Keywords - Multiple comparisons, Heteroscedasticity, Family-
wise error rate, Mahalanobis Distance. 

 
i. INTRODUCTION  

In regression analysis, the usual properties and 
assumptions of the Ordinary Least Squares (OLS) 
alongside its ease of computation and close form solution 
have made it so nice and attractive that it has become the 
common practice over the years to use it (OLS) as 
inferential tools in regression analysis. Among these 
attractive properties is the homogeneity of error variance 
known as homoscedasticity.  

Homoscedasticity is an important assumption for 
which the OLS estimators enjoy minimum variance 
property. According to Carrol and Ruppert [1], there are 
many occasions where the assumption of homoscedastic 
error variance breakdown and heteroscedasticity sets in. 
Such occasions are: 
Cross sectional study: If one is examining a cross section 
of firms in one industry, error terms associated with very 
large firms might have large variance and vice versa. The 

inconsistency of the error variance from one firm to 
another in one industry leads to heteroscedasticity. 
 Income growth: As income grows, people have more 
discretionary income and more scope for choice about the 
disposition of their income, hence ��

�is likely to increase 
with income growth. 
Model specification: When regression model is not 
correctly specified and a wrong functional form of 
regression analysis is adopted, ��

� tend to diverge thereby 
setting in heteroscedasticity. 
Skewness: Skewness in the distribution of one or more 
repressors’ in the model leads to non- constant error 
variance.  This occurs more frequently in data where the 
distribution of income and wealth is uneven.  

Phase II clinical study: In a phase II clinical study, 
multiple groups with different dose levels are usually of 
interest to be compared with a control group to detect the 
effect size of the dose level. According to Li and Wei  [8], 
one of the main goals of a phase II clinical study is to 
estimate the minimum effective dose (MED) and the 
maximum safe dose (MSD).  

Under the usual normality and equality of variance 
assumption, Dunnett’s method has been widely used to 
estimate the MED and/or MSD in dose–response studies. 
In the practical clinical study, the homogeneity of variance 
assumption is seldom satisfied since the variation of 
response under different dose levels is usually different 
with the change of dose levels because patients in different 
groups tend to respond differently due to some biological 
factors or the toxicity effect at various dose levels.  

Methods that assume equal variances may lead to 
incorrect decision. The danger of homoscedasticity 
assumption is that an ineffective dose may be claimed as 
effective or an unsafe dose may be claimed as safe when 
the assumption is violated. Therefore, more flexible 
methods that do not assume equal variances are in great 
need. 

II. LITERATURE 

A. Multiple comparisons: 



Professional	Statisticians	Society	of	Nigeria 
																																									Edited Proceedings of 2nd International Conference																								                   Vol. 2, 2018 

303 

 

 
© 2018, A Publication of Professional Statisticians Society of Nigeria 

 

Under the usual normality and equality of variances 
assumption, many multiple comparison procedures have 
been developed and widely applied. Dunnett [2] proposed 
a well-known test for the multiple comparisons with a 
control (MCC). Tukey [12] provided the simultaneous 
confidence intervals (SCIs) for all-pairwise comparisons 
(MCA). Scheffe [9] pioneered the pivoting of the F-
statistic to give SCI for all-contrast comparisons (ACC). 

Tamhane [10] proposed two approximated approaches 
for the MCC and all-pairwise comparisons when the 
variances are unequal. Games and Howell [3] provided the 
approximate SCIs for all-pairwise differences under the 
heteroscedasticity. Hochberg [5] proposed an approximate 
approach for all-pairwise comparisons.  

Tamhane [11] gave a brief review and comparison of 
these procedures. Hasler and Hothorn [4] proposed a 
procedure for the multiple contrast tests that provided 
approximated SCIs for ACC. Li [7] proposed an 
approximate method for all-pairwise comparisons with 
unequal variances.  

In all of these works, effort has been based on 
conducting multiple comparison tests through construction 
of simultaneous confidence interval for all pairwise 
comparisons. However, heteroscedasticity is a property of 
the variance estimate which requires down weighting 
approach prior to the comparison test and hence in this 
paper, we propose the minimum Mahalanobis distance 
algorithm for computing variance estimate based on 
weights that are function of the data set itself. 
 
III.  Methodology 

A. Simultaneous Confidence Intervals 

Let ��� be the observed measurement on ��� experimental 

material upon which ��� treatment is applied, and ���
�   are 

identically and independently distributed as (��, ��
�). 

Consider the one-way Analysis of Variance (ANOVA) 
model given as 
 

��� = �� + ���                                                                (1) 

where � = 0,1, … , � and � = 1,2, … , �� ��~�(0, ��
�) with 

� = 0 being the control group which can be either a 
placebo or an active control and � = 1,2, … � is the active 
experimental groups. Denote the sample location and scale 
estimator of �� and ��

� as ���and ��
� respectively, 

 

��� =
�

��
∑ ���

��
���                                                               ( 2)                                   

and 

��
� =

1

�� − 1
����� − ����

�
                                         (3)

��

���

 

where ��
�~ �

��
�

��
� ���

� ,     �� = ��

 Note that Equations (2)-(3) are the least-squares estimator 
for �� and ��

� respectively. Consider testing the differences 
between each new treatment group mean and the control 

group mean, ���:  �� − �� ≤ � �� ���:  �� − �� > �, with 
� = 1, … , � where � is some given threshold constant. The 
test statistic is given by

 �� =
��� − ��� − �

�
��

�

��
+

��
�

��

                                                           (4) 

where ��
�  and ��

� are the sample variances of the control 
and the new treatment group. 
 
Several methods such as the ones in Tamhane [10] herein 
referred as TM, Li and Wei [8] herein referred to as LW 
and Dunnet [1] herein referred to as DM, and Hasler and 
Hothorn [4] usually construct the 100(1 − �)% 
simultaneous confidence lower bound for �� − �� is given 
by 
 

�� − �� > ��� − ��� − ��
��

�

��

+
��

�

��

  ��� � = 1, … , � 

where the critical value � is the solution of the equation  
 

�

⎝

⎜
⎜
⎛

��� − ��� − (�� − ��)

�
��

�

��
+

��
�

��

< �, � = 1, … , �

⎠

⎟
⎟
⎞

= 1 − �          (5) 
 

However the simultaneous confidence interval may not be 
able to overcome the problem of heteroscedasticity since it 
affects the variances of each of the independent group and 
not the mean and hence this article proposed a method for 
estimating the joint covariance matrix of the treatment 
group through an algorithm referred to as minimum 
Mahalanobis distance algorithm, (MMD).   

The methodology of the algorithm is that of 
developing resampling algorithm capable of partitioning 
data into a homoscedastic and heteroscedastic cluster 
through the Mahalanobis distance. Observations that are 
homoscedastic will have a small Mahalanobis distance 
while those that are heteroscedastic will have a large 
Mahalanobis distance. The inverse of this Mahalanobis 
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distance serves as weights that downweights the influence 
of heteroscedasticity in the multiple comparisons test. The 
algorithm is presented below: 
 
B. The Minimum Mahalanobis Distance Algorithm 
 
The algorithm below constructs a minimum Mahalanobis 
distance, MMD which becomes a metrics used to identify 
observations that are either homoscedastic or 
heteroscedastic in a set of multivariate data. 
 
Let ���  be the � × � matrix containing the � active 
experimental groups in � sample points.  Also, let ℎ be the 
integer part of  (� + � + 1) 2⁄  and (� − 1)�� ∑ (��� −�

���

�)(��� − �)�  where � is the vector of coordinatewise 

median such that �� = 1 +
���

���
+

�

�����
 is a correction 

factor for the distance  

����(����, ��) = �(��� − ����)���
��(��� − ����),    �

= 1, … , �                                                  (6) 
Where ���� and �� are the mean vector and covariance 
matrix of the basic subset. 
Step 1: 

      (a) Compute  ��(�, �) = �(��� − �)����(��� − �)      
            and rearrange  ���  in ascending order ��(�, �) 

 

 (b). Compute ��(���� , ��) where ����  and �� are 

the mean and covariance matrix          

      of the observations with the ℎ�� smallest 

values o f  ��(�, �) 

 
(c). Rearrange the n  observations in ascending 

order according to ��(���� , ��) and divide 
the observations into two initial subsets:  one 
subset includes the first (� + 1) observations 
and another subset containing the remaining 
(� − � − 1) observation. Refer to these 
subsets as the initial “Basic” and “Non-basic” 
subsets respectively. 

 
Step2:Compute ����(����, ��) = �(��� − ����)���

��(��� − ����) 
 and rearrange the observations in ascending order 
according to ����(����, ��). Let � be the number of 
observations in the current basic subset.  Divide the 
observations into two subsets:  a basic subset which 
includes the first (� + 1) observations and a non-basic 
subset containing the remaining (� − � − 1) observations 
Step 3: Repeat Step 2 until the basic subset contains ℎ 
observations. 
Step 4: Let � continue to be the number of observations in  
the current basic subset then 

 
      (a). Compute ����(����, ��) and let �(���) be the    

             (� + 1)�� ordered statistic of  ����(����, ��)    
          

      (b). If �(���)
� ≥ ����,�

� , then declare all observations   

            with  ����
� ≥ ����,�

�    as outliers and stop,  

            otherwise go to step 5. 
Step 5: Divide the observations into two subsets: a basic 
subset which includes observations with the smallest 
(� + 1) values of ����(����, ��)

 
and a non-basic subset 

containing the remaining (� − � − 1) observations. If  
� = � + 1 stop, declare no outliers in the data; otherwise 
go to step 4. 

C. Simulation Design 

We carried out several simulations to compare the family-
wise error rate of different methods for MCC. Let �� =
��

��
, � = 1, … , �, be the ratios of standard deviation of the ��� 

treatment to that of the control group. Three different 
settings are considered, and �� are assumed to be the same 

for 1,...,i k  in settings one and two. 

 
Setting one: Three random samples are generated from a 

normal distribution with mean 1   and different 

standard deviations as below. 
 

0 1 2

0

20, 15, 10,

1, 3,5,7,10 for 1,2.i

n n n

i

  

   
 

 
Setting two: Four random samples are generated from a 

normal distribution with mean 1   and different 

standard deviations 
 

0 1 2 3

0

20, 15, 10, 5,

1, 3,5,7,10 for 1, 2,3i

n n n n

i

   

   
 

 
Setting three: Four random samples are generated from a 
normal distribution with mean � = 1 and different standard 
deviations 
 

0 1 2 3

0 1 2 3

20, 15, 10, 5,

1, 2, 4, 2 10.

n n n n

   

   

    
 

 
The family-wise error rate is defined as the probability of 
rejecting at least one null hypothesis given all the null 
hypotheses are true according to Hochberg and Tamhane 
[6]. The estimated error rates are given in Tables 1–3, 
respectively, for settings one, two and three at the 
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significance level � = 0.05 based on 5000 simulations, 
and the standard errors of the estimate are given in the 
parentheses. 

IV. RESULTS AND DISCUSSION 

For all three settings, DM is very liberal and has inflated 
error rates (range from 0.07 to 0.2). TM is very 

conservative with most error rates around 0.04. The 
proposed methods, MMD, has error rates around 0.05 for 
all settings, and performs the best among all comparison 
methods. The performance of LM is similar in terms of the 
error rate for all settings (around 0.052). 
 

 
Table 1. Estimated error rate for k = 2, α = 0.05. (Setting one) 

λi 3.0 5.0 7.0 10.0 

MMD 
TM 

0.050(0.0030) 
0.047 (0.0031) 

0.051 (0.0030) 
0.046 (0.0031) 

0.050(0.0032) 
0.048 (0.0031) 

0.051 (0.0030) 
0.048 (0.0031) 

LW 0.056 (0.0031) 0.058 (0.0031) 0.058 (0.0030) 0.061 (0.0031) 
DM 0.070 (0.0036) 0.068 (0.0036) 0.072 (0.0037) 0.079 (0.0038) 

 
Table 2. Estimated error rate for k = 3, α = 0.05. (Setting two) 

λi 3.0 5.0 7.0 10.0 

MMD 
TM 

0.051 (0.0029) 
0.046 (0.0031) 

0.050 (0.0029) 
0.046 (0.0031) 

0.051 (0.0029) 
0.045 (0.0031) 

0.049 (0.0028) 
0.048 (0.0030) 

LW 0.055 (0.0032) 0.054 (0.0031) 0.056 (0.0031) 0.057 (0.0032) 
DM 0.084 (0.0039) 0.090 (0.0040) 0.089 (0.0040) 0.089 (0.0040) 

 
Table 2. Estimated error rate for k = 3, α = 0.05.  (Setting three) 

λi/n3 0.4 0.8 1.2 1.6 2.0 

MMD 
TM 

0.050 (0.0030) 
0.047 (0.0030) 

0.050 (0.0038) 
0.047 (0.0031) 

0.051 (0.0032) 
0.049 (0.0031) 

0.050 (0.0028) 
0.053 (0.0032) 

0.051 (0.0029) 
0.047 (0.0030) 

LW 0.054 (0.0032) 0.053 (0.0032) 0.049 (0.0031) 0.049 (0.0031) 0.051 (0.0031) 
DM 0.092 (0.0041) 0.137 (0.0048) 0.184 (0.0055) 0.205 (0.0057) 0.218 .0058) 

 

V. CONCLUSION 

In this paper, we propose the MMD algorithm procedures 
for MCC when the equal variance assumption fails. 
Compared with other approximations, the proposed 
method controls the family-wise error rate for different 
sample sizes and variances. 

In summary, how to control the family-wise error rate 
is a central issue in the area of the multiple comparisons. 
The plausibility of the equal variance condition should 
always be considered and verified. When the assumption 
of the equal variances is not satisfied, the methods with 
more flexible restrictions, such as the method proposed in 
this article, may be considered as a more reasonable 
candidate for the MCC. 
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