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Abstract 

This research introduces a new four-parameter probability model which represents another generalization 
of the Transmuted kumaraswamy distribution. The developed model is named Exponentiated Transmuted 
Kumaraswamy Distribution (ETKD) and its basic statistical properties are studied and provided. An 
explicit expression for its moment, moment generating function, odds function, hazard function, survival 
function and quantile function were discussed and derived. The model parameters are estimated by using 
the technique of maximum likelihood. Based on the statistical significance of the model adequacy, the E�� 
distribution provides a better fit than the well-known Transmuted Kumaraswamy and �umaraswamy 
distribution on the flood dataset. 

Keywords: Generalization, Transmuted kumaraswamy distribution, Maximum likelihood estimation and 
model adequacy. 

1.0 Introduction  

The Kumaraswamy probability distribution was developed by Kumaraswamy (1980) which has a wider 
application in hydrology and related areas. Despite its similarity with Beta distribution, it is considered to 
be used best in terms of simulation studies because of its simple closed-form of both its probability density 
function and cumulative distribution function. 
 
Based on the work of Nadarajah (2008), kumaraswamy distribution has been used in numerous researches 
in the context of hydrological literature because it is considered to serve as a “better substitute” to the beta 
distribution due to its simpler form nature, (see, Koutsoyiannis and Xanthopoulos (1989)). In numerous 
areas such as hydrology, Kumaraswamy distribution has received considerable interest, see Sundar and 
Subbiah (1989), Seifi et al. (2000), Ponnambalam et al. (2001) and Ganji et al. (2006). 

Muhammad et al.,(2016) proposed a new three-parameter probability model named Transmuted 
Kumaraswamy distribution and derived its basic statistical properties. The proposed model was found to 
outperform some existing baseline distributions (models) when applied to real-life datasets. Mohammed 
and Abdullahi (2017), the study introduces a four-parameter probability model obtained by adding a shape 
parameter to New Weighted Exponential distribution. The two-parameter New Weighted Exponential 
distribution was generalized to its four-parameter variant entitled Kumaraswamy-New Weighted 
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Exponential Distribution (K-NWED).  Mathematical expressions for its Moments, Moment Generating 
Function (MGF), Reliability analysis, Limiting behavior and the Quantile Function of the K-NWED were 
presented. The parameters of the K-NWED were estimated using the technique of maximum likelihood. 
Cordeiro and de Castro (2009) proposed another family of the Kumaraswamy generalized distributions 
denoted by the (Kw–G). They derived and studied almost all the structural and statistical properties of the 
Kw–G distribution. Kumaraswamy distribution has received great attention over the years, (see Cordeiro et 
al. (2010, 2012), Jones (2009)) and Yahaya and Mohammed (2017).  

Because of the flexibility of Kumaraswamy distribution, many kinds of research in the hydrological 
analysis were carried out. Gupta and Kundu (1999) introduce the exponentiated exponential distribution 
which considered to be a generalization form of the standard exponential distribution. Based on the same 
concept, four more different exponentiated type of distributions were proposed and the structural properties 
of the standard Gumbel, standard gamma, standard Weibull and standard Fréchet distributions were also 
provided by (Nadarajah and Kotz (2006)). 

2.0 The Exponentiated Transmuted Kumaraswamy Distribution (ETKD) 

The derivation of the Exponentiated family of distribution is defined by raising the cumulative distribution 

function of an arbitrary baseline distribution by a shape parameter say; 0  . Its cumulative density 

function (cdf) is given as; 
 

   ( ) ( )F x G x


                                                                                                             (1)   

and its corresponding probability density function (pdf) is defined by; 

 
1

( ) ( ) ( )f x g x G x





                                                                                                   (2)                                                                                                          

Now, to get the cdf and pdf of  Exponentiated Transmuted Kumaraswamy Distribution (ETKD), we used 
equation (1) and (2). The pdf and cdf of Transmuted Kumaraswamy distribution are given by (3) and (4) 
respectively as 

 1 1( ) (1 ) 1 2 (1 )g x x x x                                                                          (3)                                                               

( ) 1 (1 ) 1 (1 )G x x x                                                                                        (4)                                                     

 
Figure 1: The probability density function  of the ETKD for different values of the parameters 
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So, 

 ( ) 1 (1 ) 1 (1 )F x x x


                                                                                   (5)                                                             

  
1

1 1( ) (1 ) 1 2 (1 ) 1 (1 ) 1 (1 )f x x x x x x


           


                     (6)                                           

where, 0 1 1and     , , and   are the shape parameters and λ the transmuting 

parameter. 

By choosing some arbitrary values for parameters: , , ,a b c d        we provide some possible 

shape for the probability density function of  ETKD as shown in Figure 1: 

Equation (6) can be simplified further to give (7), 
 Since,  
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where, 
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3.0 The rth Moment 

Lemma 1: If � has the ( ; , , , )ETK x     distribution, then the r�ℎ moment of � is given as follows; 

( ) (1 ) 1 , 2 1 ,2r r r
E x m j l m j l      
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Proof: Let X have ETKD, then the r�ℎ moment of X is given by; 
1
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3.1 Raw Moments about the Origin 

Putting r = 1, 2, 3 and 4 in (7) first four raw moments are 
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The expressions for variance is given by; 
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The coefficient of variation (CV), skewness and kurtosis measures can now be calculated using the 
following relationships 

var( )
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2

( ( ))
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E X E X

X
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The above three statistics can be obtained using equations (7). 

3.2 Moment Generating Function 

Lemma 2: If � has the ( ; , , , )ETK x     distribution, then the Moment Generating Function of � is 

given as follows; 
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Proof: Let X have ETKD, then the Moment Generating Function of X is given as; 
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3.3 Quantile Function 

Lemma 3: If � has the ( ; , , , )ETK x     distribution, then the Quantile Function of � is given as 

follows; 
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Proof: Let X have ETKD, then the Quantile Function of X is given as; 
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3.4 Survival function 

Survival function is the probability that a system will survive beyond a given time. Mathematically, the 
survival function of ETKD is define by: 
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                                                                              (16)                                                                                            

By choosing some arbitrary values for parameters: , , ,a b c d        we provide some possible 

shape for the survival function of the ETKD as shown in Figure 2: 
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Figure 2: The plot of survival function of the ETKD for different values of the parameters 

3.5 Hazard function 

Hazard function is also called the failure or risk function,  is the probability that a component will fail or 
die for an interval of time. The hazard function is define as; 
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       (17)                             

3.6 Odds Function 

Odds function for ETKD can be defined as: 
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3.7 Estimation of Parameters of the ETKD 

The estimation of the parameters of the ETKD is done by using the method of maximum likelihood 

estimation. Let nXXX ,.......,, 21  be a random sample from the ETKD with unknown parameter vector

( , , , )T     . The total log-likelihood function for   is obtained from f(x) as follow 
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So, differentiating ln ( )L   partially with respect to each of the parameter ( , , , )T      and setting 

the results equal to zero gives the maximum likelihood estimate of the respective parameters. The partial 

derivatives of ln ( )L  with respect to each parameter is given by: 
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Hence, the MLE is obtained by solving this nonlinear system of equations. Solving this system of nonlinear 
equations is complicated, we can therefore use statistical software to solve the equations numerically.  

5.0 Application 

This section presents the data analyses in order to assess the goodness-of-fit of the ETK distribution. The 
first data set is from (Dumonceaux and Antle, (1973)); with respect to the flood data with 20 observations 
and is given in the table below. 

Table 1: Flood data 

0.265, 0.269, 0.297, 0.315, 0.3235, 0.338, 0.379, 0.379, 0.392, 0.402, 0.412, 0.416, 0.418, 0.423, 0.449, 
0.484, 0.494, 0.613, 0.654, 0.74. 
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In order to compare the flexibility of the distributions, I consider the Kolmogorov-Smirnov (K-S) test, 
Cramér-von Mises and Anderson-Darling goodness-of-fit statistics for the flood data. Table 2 gives the 
MLEs of the unknown parameters of the Exponentiated Transmuted Kumaraswamy (ETK), Transmuted 
Kumaraswamy (TK)  and Kumaraswamy (K) distributions. These results shows that the E�� distribution 
provides an adequate fit for the flood data. 

Table 2. Shows  MLEs of the unknown Parameters for the flood data and the goodness-of-fit measures 
which includes K-S test, Cramér-von Mises and Anderson-Darling goodness-of-fit are given in the table 
below. 
No. Distribution 

  


     


           


               



                         
  � − �   

Test 
W            A 

1 ETK 1.7616 4.4083 0.8685 4.1777  0.17153 0.0835 0.5178 
2 TK 3.7252  

 
  10.9575  
 

   0.6143  
 

−  0.1930  
 

0.1409  
 

0.8408  
 

3 K 3.3631  
 

  11.7882  
 

     - −  0.2109  
 

0.1658  
 

0.9722  
 

Table 2 indicates that all the three measures considered in this analysis i.e. Cramér-von Mises test statistics 
and Anderson-Darling goodness statistics have the smallest values for the Exponentiated Transmuted 
�umaraswamy distribution for the flood data concerning the Transmuted �umaraswmy and �umaraswmy 
distributions. Based on these goodness-of-fit measures I conclude that the Exponentiated Transmuted 
�umaraswamy distribution provides a better fit than the Transmuted�umaraswmy and �umaraswmy 
distribution. 

5.0 Conclusion 

A shape parameter was added to the Transmuted Kumaraswamy Distribution in order to increase its 
flexibility. An explicit expression for some of its basic statistical properties were studied and derived. In 
terms of the statistical significance of the model adequacy, the E�� distribution leads to a better fit than the 
well-known TK and �� distribution on the flood dataset.  
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