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Abstract—Diffusion processes governed by Stochastic 
Diffusion Equations (SDEs) are a well known tool for modeling 
continuous-time data. Consequently, there is widely interest in 
efficiently estimating diffusion parameters from discretely 
observed data. Likelihood based inference can be problematic, 
as the transition densities are rarely available in closed form. 
One widely used solution proposed by Pedersen, (1995) 
involved the introduction of latent data points between every 
pair of observations to allow an Euler-Maruyama 
approximation of the true transition densities to become 
accurate. We applied Markov Chain Monte Carlo methods to 
sample the conditional posterior distribution of the latent data 
and model parameters on discretely observed data. In this 
case, we modified algorithm that would explore efficient 
MCMC schemes that are affected with degeneracy problem. In 
our approached the situation where the scheme becomes 
degenerate does not occur. This method capable of sampling 
efficient estimate of diffusion parameters from discrete 
observed epidemic data either with or without measurement 
error. 
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I. INTRODUCTION 

Most epidemic data are discretely observed and 
undergo stochastic transition rate. Stochastic epidemic 
models allow more realistic description of the transmission 
of disease as compared to deterministic epidemic models 
[3], [2]. However, parameter estimation is challenging for 
discretely observed data for stochastic models [19], [13]. 
Several methods of frequentist procedures to infer on the 
parameters are been considered in the literatures. Most 
techniques struggle when inter-observation times are large.  

Here, we employ an efficient Bayesian estimation 
approach under stochastic differential equation (SDE) 
technique. Stochastic differential equation (SDE) models 
play a prominent role in a range of application areas, 
including biology, chemistry, epidemiology, mechanics, 
microelectronics, economics, and finance [5], [15], [8], [4], 
[10], [11] & [6]. A complete understanding of SDE theory 
requires familiarity with advanced probability and stochastic 
processes. These processes are often referred to as a 
diffusion process. 

Diffusion processes are a promising instrument to 
realistically model the time-continuous evolution of natural 
phenomena. Diffusion process have an advantage over some 
of the other stochastic formulations, in that, they can be 
easily derived directly from the deterministic system of 
ordinary differential equations and have a relatively simple 
form [16].Inferring the parameters of such models possess 
challenging in the field of study.  

In this paper, we reviewed some of the empirical 
solution to parameter estimation problems. We adopted 
Bayesian imputation approach to estimate the parameter of 
interest. We replaced intractability transition density 
problems with Euler-Maruyama approximation. We also 
adopted data augmentation scheme so as to limit the 
discretization error incurred by the approximation. 

II. RESEARCH METHODOLOGY 

We restrict attention to estimation within the Bayesian 
imputation approach. The essential idea of the Bayesian 
imputation approach is to augment low frequency data by 
introducing intermediate time-points between observation 
times. An Euler-Maruyama scheme is then applied by 
approximating the transition densities over the induced 
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discretization.To deal with such data, we define Observation 
say D as: 
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(1) as discretely observed and  Dn

(2)  as unobserved part. 
where,  X(1)

t represent dimension d1> 0 and X(2)
t   dimension 

d2 ≥ 0. With d1+d2 = d. If d2 = 0, implies fully observed. 
 
We consider a parameterized family of d-dimensional 
diffusion process {Xt, t ≥ 0} satisfied by a Stochastic 
Differential Equation of the form: 

tttt dWXdtXdX ),(),(     (2) 

     , X0= x0 
Xt is the value of the process at time t, θ is the parameter 
vector of length p, α(Xt, θ) is the drift functions, β(Xt, θ) is 
the diffusion coefficient, and Wtis standard Brownian 
motion (d-vector Wiener Process). The X0 = x0is the vector 
of initial conditions for this process. We seek a numerical 
solution via the Euler-Maruyama approximation. The idea is 
to discretize Equation (2) by Euler Scheme as [1].
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WhereΔWt ~ Nd(0, IΔt). Since, most diffusion process 
undergo Markov chain, we assume equidistant observation 
times with the likelihood function of the observation given 
parameters is of the form: 
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Where, π(xtk+1|xtk ,θ) denotes the transition density from Xtk 
= xtk to Xtk+1 = xtk+1. 

This likelihood function is very rarely available in 
closed form. The maximum likelihood estimation would be 
intractable. We therefore considered Bayesian method of 
estimation. 
 
 BAYESIAN INFERENCE  
Our modification based on Bayesian inference approach. In 
statistics, Bayesian inference is a method of inference in 
which Baye’s rule is used to update the probability estimate 
for a hypothesis as additional evidence is required. The idea 
behind Bayesian inference is that the likelihood and prior 
are combined using Bayes’ theorem to compute the 
posterior distribution. 

The posterior density from (4) is given thus:  
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Where π(θ) is the prior density, the Euler- Maruyama 
approximation might not be accurate if interval [tk+1, tk] is 

too large. We therefore adopted a data augmentation 
approach. 
In data augmentation we inserting m-1 additional time 
points in between [tk+1, tk]. 
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  , k = 0, ..., K(6)

 

Where,
m

tt kk
kmkm


 


1

1   

Therefore, the joint posterior for parameters and imputed 
data as 
 

(7) 
 
where Euler density  
Nd(.; μ, Σ) denotes the multivariate Gaussian density with 
mean μ and variance-covariance Σ 
 
 Sampling Procedure 

The posterior distribution is typically analytically 
intractable, we therefore sample via Markov Chain Mote 
Carlo (MCMC) scheme. 

(i) for path update, we sample  x | x0, xT, θ 
(ii) For parameter update, we sample  θ | x0, xT, x 
 
In path updating, various diffusion bridges proposal 

mechanism for sample the skeleton path had been proposed 
in the literature, such as Diffusion bridge by [18], Modified 
diffusion bridge by [9], Regularized sampler by [14] among 
others, 

Here we adopted Modified Diffusion Bridge proposed 
by [9].  

Assuming the starting point (x0 = xτk) and the end point 
(xT = xτm) are observed, the path update proposal would now 
be our aim, to get this we defined a proposal distribution: 
q(xτk+1 | xτk, xτm, θ)and find out the μτk , Στk. 
Modified Diffusion Bridge for univariate model is of the 
form:(8) 
  ,k = 0, ..., m-1  
where                       , 
 
 
The marginal posterior density for the imputed data 
π(x | x(i)

τk-1, x
(i)

τm ,θ) has acceptance Probability of the form: 
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Under this update scheme, the proposal mechanism of 
the MCMC becomes degenerate as m → ∞, meaning that, 
there is dependence between the parameters and the imputed 
values, likewise there is dependence between values of the 
imputed latent process itself. This was first highlighted as a 
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problem by [18]. To overcome this, we consider innovation 
scheme earlier proposed by [12], though not applicable to 
discrete observation. 
 
CONTRIBUTION 

Our contribution is on Modified Innovation scheme, 
that is, the MCMC sampling strategy to be considered was 
the innovation scheme, first introduced by [7]. In diffusion 
there is one-to-one relationship between ΔXt and ΔWt. 

                                                                                 (10) 
 
 
 
which implies:     
  
 
                                                 (11)
  
 
Rather than sample from the distribution of  conditional on 
the missing imputed data, the innovation scheme uses a 
subtle reparameterisation, by sampling  conditional on the 
driving Brownian motion, and the latent path (xτk) is 
obtained deterministically and consistent with the 
parameters of the model, therefore, this overcoming the 
dependence problem. 

Here, we sampled the parameters of interest (θ), given 
the Brownian driving (wτk) and observation (DT) thus: 

 

)(}|),({)(),|(  JDwfDw TT    (12) 

 
where J(θ) is  the Jacobian for one increment is  
 
 
 
The target distribution therefore becomes 
 
                      (13) 
 
Having set this update scheme, the new acceptance 
probability now becomes 

      
                     (14)                 
 

III. ANALYSIS 

We demonstrate the performance of aforementioned 
methods described above by applying it to synthesis 
simulated epidemic system of diffusion model.  We 
considered stochastic infection model (SEIR Model) which 
undergo diffusion system of model: 

 
                                                                        
                                                  (15) 
 
 
Here, the state variable X(i)

t = (x1, x2, x3)
T

, where, x1 denotes 
Susceptible individuals, x2 represent Exposed, and x3  
Infectious individuals with their initial condition for the 
state variables are (500000, 1000,10) respectively. The 
parameter of interest denoted by θ = (β, γ, α)T. We 
initialized the sampler with 0 < β < 1, 0 < γ < 0.7 and 0.1 < 
k < 1 that represent transmission rate, exposed rate and 
infection rate respectively. We performed iteration for 
104times with three different number of imputed time points 
(m = 5, 15 and 50). In parameter proposal, we used 
independent sampler of the formNd(0, ψj

2) distribution for 
the proposal of parameter of interest, where ψj

2 is the turned 
variance of {0.009, 0.009, 0.001}for the  parameter 
respectively. 
To show that the proposed method does not degenerate 
when increasing the number of imputed time points, we 
applied modified innovation scheme. We set the starting 
time point at t0 = 0 and end-time at T = 30, with equidistant 
time interval Δτ = 0.001. 

We choose an uninformative prior for each of the 
parameter, and apply the MCMC scheme to infer the 
posterior values of the model.  

We compared the empirical method (Naïve) with our 
new method.The path and parameters update and the results 
were depicted below. 

Implementation was done with the aid of R-software 
programming. 

 

 
       Figure 1(a)                                 Figure 1(b) 
 
 

 

Figure-1(a) shows the density plot for the innovation 
scheme for three different imputed values, the three imputed 
were very closed. And 1(b) shows the trace plot for the three 
parameters, the trace plot mixing very well.  
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   Figure 2(a).Auto-correlation for the Naive method scheme 

 
     Figure 2(b).Auto-correlation for the Modified 
innovation scheme. Source: Simulated SEIR synthetic data. 

 
Figure-2(a) & (b) shows auto-correlation forboth 
traditional naive method for parameter beta and 
modified innovation scheme. 

 
 

 
Figure 3(a)  Auto-correlation for the Naive method 

 
   Figure 3(b). Auto-correlation for the Modified innovation 
scheme. Source: Simulated SEIR synthetic data. 
 

Figure-3(a) & (b) shows  the naive method for the  
parameter alpha and modified Innovation scheme. 
 
                 IV. RESULTS AND DISCUSSIONS 
The modified method adopted capable of sampling efficient 
estimate of diffusion parameters from discrete observed 
epidemic data for infinite number of imputed time points. 
See figures 1(a), 2(b) and 3(b). 

The results obtained from posterior distribution in 
modified innovation scheme when the number of imputed 
points increases does not worsen the mixing of the chain, 

figure 2(b) and 3(b). Also, under the modified innovative 
scheme as number of imputed tend to infinite (m → ∞), we 
have both parameters and path update that are consistent.  

V. CONCLUSION  

We consider a diffusion process approach based on a 
stochastic discrete-time approximation diffusion process. 
With the aims of estimate unobserved latent data and 
parameters of given epidemic system of model when the 
number of imputed time point is very large. We presented a 
naive class of estimation with our new method the modified 
innovation scheme (13) which are computationally and 
statistically efficient, and can be readily applied in situations 
where the discrete-observation of the process is possible. 

In our approached the situation where the scheme 
becomes degenerate does not occur. 
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