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Abstract— In this study, the effects of twin factors of 
outliers and multicollinearity on the efficiency of classical 
multiple linear regression model were investigated. In a 
Monte-Carlo study, data were simulated under different 
forms of outliers in the response variable and collinear 
structures among the independent variables at varying 
sample sizes. Four regression estimators were employed for 
models’ estimations. In a Monte-Carlo study, datasets 
plagued with the twin problems of outliers and 
multicollinearity as earlier stated were simulated to examine 
the performances of the four chosen estimators over 1000 
replications. The results showed that Humber-M (HM) 
estimator was quite efficient than the least squares (LS) 
estimator in the present of outliers only, while the Ridge 
regression (RR) is a better choice than LS in the presence of 
multicollinearity only. However, the Robust Ridge 
regression (RRR) and HM were both efficient when the data 
are plagued with both problems of outliers and 
multicollinearity simultaneously. In all cases, the mean 
square error was used as models’ assessment criterion. 

Keywords-- Least squares, Ridge regression, Robust ridge 
regression, Humber-M estimator, Outliers, Multicollinearity. 

I. INTRODUCTION 

In classical (multiple) linear regression analysis, the well-
known least squares (LS) method is used to estimate the 
parameters and it is only optimal when the error term in a 
regression model satisfies Gauss-Markov properties [1-6] 
among others. However, in practice, these assumptions 
may not hold due to outliers and multicollinearity in the 
observational or experimental data, which might render 
the LS to be less efficient [4,6].   

Outlier is known as extreme observation that appears 
inconsistent with the rest of the data [1]. LS will be biased 
and/ or not efficient, when normality assumption on the 

model’s error terms fails to hold due to outliers. Robust 
regression methods like Least absolute value, m-
estimators, least median square etc. have been advocated 
in the literature as alternative to LS in order to model data 
with outliers[1-4]. 

Multicollinearity, as described in the study [7, 8] as a 
situation in which two or more predictors in a multiple 
regression model are highly correlated. Also, if some of 
the predictor variables in multiple linear regression 
models are correlated, least square estimator becomes less 
efficient and unstable, thereby rendering the resulting 
regression model unsuitable for meaningful inference [8]. 
Some bias estimators have been provided in literature to 
model data with multicollinearity. Bias estimators include 
the ridge regression, principal component regression [4, 8, 
9, 10] among others.  

 
Outliers and multicollinearity problems could occur 

simultaneously in a data set almost as often as each 
problem could occur separately. Robust-ridge regression 
has been suggested in literature to model data with both 
outliers and multicollinearity simultaneously. Therefore 
this study is aimed to investigate the efficiency of some 
estimators of multiple linear regression models in the 
presence of outliers and multicollinearity against least 
square estimator, using mean square error (MSE) as 
models’ assessment criterion. 

II. MATERIALS AND METHODS 

Brief descriptions of the mathematical development of 
methods used are provided in what follow. 
Consider a multiple linear regression model of the form: 

  � = �β + ε        (1)  
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where � is an � × 1 response vector, � is an  � × � 
matrix of data (i.e. � observation on  �  variables) with 
rank �, � is a  � × 1 vector of model’s parameters, and ε 
is � × 1 random vector with independent, identically and 
normally distributed elements, i.e. ��~�(0, ��). We 
provide brief theoretical backgrounds of some of the 
estimators of model (1) in the presence or absence of 
problems of outliers and multicollinearity. 

1.      Least Square (LS) Method
 

One of the main goals in regression analysis is to find the 
best estimates of unknown parameters in the model. The 
traditional method commonly used is the LS and it has the 
best performance if the error term ε in (1) has a normal 
probability distribution. Hence, the LS estimator is 
obtained by minimizing the sum of squares errors. 

       ��� ∑ �� = ��� ∑(� − ��)�       (2)
 

 
which resulted to the LS estimator given by:   

    ���� = (���)���′�       
(3) 
The equation (2) is the LS estimator of model (1). 
However, LS method is sensitive to the existence of 
outliers, because each data point is equally weighted in 
the process of determining the parameters of the model. 
Therefore, robust estimation techniques which weight 
each data point based on statistical criteria are desired for 
modeling data set that are plague with outliers. 

2.    Robust M-Estimator 
The most common general method of robust regression is 
the M-estimation, proposed by Huber (1964) which was 
claimed to be nearly as efficient as LS under the violation 
of model’s Gaussian error. Instead of minimizing the sum 
of squared errors as the objective function, the M-estimate 
of the objective function is given as:  

  ��� ∑ � �
��

�
� = ��� ∑ � �

�����
��

�
�                       (4) 

where �� = (�� − ��
��) and � is a robust estimate of scale 

parameter  � and can be estimated by using the formula 

� =
������| ���������(��)|

�
                    (5)  

In (5), ℎ is suggested to be 0.6745 which make � an 
approximately unbiased estimator of �  if � is large and 

error distribution is normal (Draper and Smith, 1998). A 
reasonable � should satisfy the following properties:  
�(��) ≥ 0, �(0) = 0, �(��) = �(−��), �(��) ≥ �(��

�) for 
|��| ≥ |��

�|                                   (6) 

To minimize equation (4), equate the first partial 
derivatives of � with respect to �� (� = 0,1) to zero, 

yielding a necessary condition for a minimum. This gives 
the system of  � = � + 1  equation.     

∑ ���� �
�����

��

�
� = 0,     � = 0,1      (7)  

     
where � is the �′and ��� is the ��� observation on the  ��� 

predictor. The equation (7) does not have an explicit 
solution. In general, an iterative methods or nonlinear 
optimization techniques will be used to solve them. In 
fact, iterative reweighted least squares (IRLS) might be 
used. To use (IRLS), first the weight has to be defined 
normal (Draper and Smith, 1998) as 

  ��� =

⎩
⎨

⎧��
�����

��

�
�   

�
�����

��

�
�

1

 �           
,����

����

                                  (8) 

  Then equation (8) becomes    

∑ ��� ���(�� − ��
��) = 0                                             (9) 

The equation (9) can be written in matrix notation as: 

�� ����� = �� ���Y                                           (10) 

where ���  is an � × � diagonal matrix of weights with 
diagonal elements: ��� , ��� , … , ��� is given by equation 
(8). The equation (9) and (10) can be considered as the 
usual least square normal equation. Meanwhile, Several 
choices of � have been proposed in the literature as shown 
in Table 1. One of these was used in this study, which is 
Huber m-estimation. 
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Table 1: Table of Huber objective, influential and weight functions. 

Objective Function Influential Function Weight Function 

�(��) =

⎩
⎨

⎧
��

�

2
,                 ��� |��| ≤ �

�|��| −
��

2
 ,   ��� |��| > �

� ψ(��) = �

�   ���   �� >   �
��  ���   |��| ≤ �

−�    ���  �� < −�

� �(��) = �
1,           ��� |��| ≤ � 

�/|��|, ��� |��| > �
� 

       
The value of k = 1.345 and is refer to as tuning constant, chosen to achieve desired efficiency. 

3.  Ridge Regression 
The ridge regression (RR) was originally proposed by 
[9,10]. It is an advance tool to model data with 
multicollinearity. The objective of ridge regression is to 
reduce the size and variance of the least squares estimates 
by introducing a slight amount of bias. The ridge 
regression estimator is given as: 

    ��� = (��� + ��)�� �′�                                (11) 
where � is known as � × � identity matrix and � is called 
biasing parameter. Meanwhile, various methods for 
determine the value of � have been proposed in the 
literature. Thus, this study employed a method described 
by Hoerl, Kennard and Baldwin (1975) to obtained the 

value of  � where � = ����� given by 

 �����  =
����

�

∑ ��� �
�  , � = 1,2, … , �                                  (12) 

and  ���
� =

(������ )�(������)

���
                            (13)

   
  

 
4. Robust–Ridge Regression Huber m-estimator  
 
The Robust–Ridge Regression Huber m-estimator (RR-
Hub) is given as follow: 

�������� = (��� + ���� �)�� �′�                          (14) 
            
where ���� is called the robust ridge bias parameter and it 
is obtained from the Huber m-estimator, instead of using 

����� obtained from LS. The HUBk  is determined from 

data using     

  ����� =
�����

�

∑ ���� �
�         , � = 1,2, … . �                        (15) 

                       
The robust scale for RR Hub-M-estimator is defined as: 

  ����
� =

(�������)�(�������)

���
                                (16) 

The  �����  is aimed to reduce the effect of outlier on the 
value chosen for the biasing parameter [11]. 
 

III. SIMULATION STUDY 

The simulation scheme adopted here was adapted from 
those employed by [3, 4, 11, 12] to evaluate the 
performance of the four estimators considered here: LS, 
Hub, RR, and RR-Hub.  

The simulation was designed to allow both the outliers 
and multicollinearity problems to be present in data 
simultaneously. The following linear regression model is 
used for modelling. 
�� = � � + ����� + �� ��� + ����� + ��   (17) 
� = 1,2,3, … , �                          

 
 

The values of the model’s parameters were set as: �� =
�� =  �� = �� = 1. The predictor variables were generated 
[3, 4] from  
��� = (1 − �)��� + ����,    � = 1,2,3                 (18)                                   

where ���   is independent standard normal random variable 

and was generated from the standard normal distribution. � 
represents correlation between two explanatory variables 
and its values were chosen as:  0.0, 0.95, and 0.99.  Two 
sample sizes n = 20 and n = 100 were used for the study.  

The error term of model (17) were simulated from the 
following three distributions: 
���� �: �~�(0,1)                    (19) 
���� ��: �~�(0,1) with identical outliers         (20)   
             in � direction (where we let the first 
              two value of �′� equal to 20)  
                                                                   
���� ���: �~0.9�(0,1) + 0.1�(0,100)            (21) 
which is mixture of two normal populations.                       
For comparison purpose, the Mean Square Error (MSE) 
was used as models’ assessment criterion. R statistical 
packages was employed for all analysis. 

IV. ANALYSIS AND RESULTS 

Each of the estimator was used to fit the regression model 
(17) at 1,000 replications over the two sample sizes n = 
20,100. Thus, the estimates of the parameters provided by 
each estimator were the average values obtained over 1000 
iterations. 
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The performances of all the four estimators were 
assessed using the MSE at the two chosen sample sizes at 
varying levels of collinearity and specified error term 

distributions. These results are presented in Tables 2 
through Table 10. 
 

                       

Table 2: Table of MSEs of the estimated parameters of multiple linear regression models with different distributions of error 
term and no multicollinearity among the predictor variables at sample sizes � = 20, 100.The true parameter values are in 
parentheses.  

Distribution 
of Error Term 

& outlier 
defined on Y 

Estimator 

� = 0.0 
n = 20 n=100 

���(1) ���(1) ���(1) ���(1) ���(1) ���(1) ���(1) ���(1) 

�~�(0,1) 

LS 0.0566 0.0696 0.0681 0.064 0.0105 0.0102 0.0099 0.0102 

HM 0.0624 0.0759 0.0704 0.0668 0.0113 0.0109 0.0104 0.011 

Ridge 0.1925 0.0813 0.0848 0.0703 0.0436 0.0151 0.0145 0.0153 

RR-Hub 0.1925 0.0814 0.085 0.0705 0.0436 0.0151 0.0145 0.0153 

�~�(0,1) & 
10% outliers in 

Y 

LS 3.9114 2.317 2.5842 2.2579 3.6475 0.3635 0.3814 0.3682 

HM 0.145 0.1787 0.1851 0.1401 0.0546 0.0178 0.0173 0.0168 

Ridge 3.8227 1.4981 1.6143 1.4796 3.6705 0.309 0.3331 0.311 

RR-Hub 3.8227 0.7825 0.8204 0.7762 3.6705 0.2965 0.3172 0.2955 

�~0.9�(0,1)
+ 0.1�(0,100) 

LS 59.0539 66.1498 67.0868 70.4422 10.2378 11.8012 9.8567 10.4803 

HM 0.1017 0.1475 0.1763 0.1311 0.0167 0.0171 0.0154 0.0163 

Ridge 50.335 47.9418 48.7244 48.4467 9.8721 4.408 3.8876 4.164 

RR-Hub 50.335 0.9804 0.9795 0.984 9.8721 0.9277 0.9437 0.9501 

 
Table 3: Table of MSEs of the estimated parameters of multiple linear regression models with different distributions of error 
term and 95% multicollinearity among the predictor variables at sample sizes � = 20, 100.The true parameter values are in 
parentheses.  

Distribution 
of Error Term 

& outlier 
defined on Y 

Estimator 

� = 0.95 
n = 20 n=100 

���(1) ���(1) ���(1) ���(1) ���(1) ���(1) ���(1) ���(1) 

�~�(0,1) 

LS 0.0574 4.6681 4.7363 4.2086 0.0107 0.6966 0.693 0.7454 

HM 0.0627 5.0486 4.9857 4.4617 0.0115 0.7602 0.7298 0.8001 

Ridge 0.4545 0.5936 0.5867 0.5298 0.0883 0.1442 0.1448 0.1522 

RR-Hub 0.4545 0.8439 0.8352 0.7516 0.0883 0.1513 0.1519 0.1598 

�~�(0,1) & 
10% outliers in 

Y 

LS 4.0233 166.6803 181.8337 169.1736 3.672 25.2337 26.1652 25.4915 

HM 0.1445 11.4819 11.7982 9.483 0.0552 1.2495 1.1901 1.1979 

Ridge 4.1605 15.9247 17.2198 17.1586 3.7141 5.5452 5.7038 5.6498 

RR-Hub 4.1605 0.302 0.3159 0.3217 3.7141 0.1804 0.1696 0.1755 

�~0.9�(0,1)
+ 0.1�(0,100) 

LS 59.7033 4737.745 4778.024 4816.7566 10.363 792.5691 729.4988 752.0988 

HM 0.1251 10.8605 12.5775 14.5781 0.017 1.1559 1.1051 1.1965 

Ridge 50.6239 667.8211 628.8046 677.9194 9.9194 196.2786 182.5951 186.6809 

RR-Hub 50.6239 0.8877 0.8864 0.8893 9.9194 0.7986 0.8006 0.8011 
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Table 4: Table of MSEs of the estimated parameters of multiple linear regression models with different distributions of error 
term and 99% multicollinearity among the predictor variables at sample sizes � = 20, 100.The true parameter values are in 
parentheses. 
 

Distribution 
of Error Term 

& outlier 
defined on Y 

Estimator 

� = 0.99 
n = 20 n=100 

���(1) ���(1) ���(1) ���(1) ���(1) ���(1) ���(1) ���(1) 

�~�(0,1) 

LS 0.0573 111.5954 113.791 101.0158 0.0107 16.5687 16.6838 17.9134 

HM 0.0627 120.7104 119.6564 106.9792 0.0115 18.084 17.5628 19.2371 

Ridge 0.4856 8.5304 8.3871 7.6185 0.0951 0.3086 0.3092 0.3263 

RR-Hub 0.4856 14.9931 14.7933 13.3675 0.0951 0.5455 0.5494 0.5795 

�~�(0,1) & 
10% outliers in 

Y 

LS 4.0278 4007.161 4373.86 4044.6441 3.6734 603.8317 629.2534 612.3157 

HM 0.1444 273.3966 284.7591 225.8291 0.0552 29.7516 28.6522 28.7816 

Ridge 4.1916 332.9719 358.4006 354.7005 3.7198 119.6328 125.2069 123.15 

RR-Hub 4.1916 0.3896 0.4284 0.4459 3.7198 1.0157 1.0105 1.0311 

�~0.9�(0,1)
+ 0.1�(0,100) 

LS 59.793 113566.3 115431.8 115092. 10.36 19014.58 17473.38 18026.14 

HM 0.1213 255.586 282.604 321.0227 0.017 27.508 26.5915 28.7669 

Ridge 50.662 16134.5 15358.6 16215.76 9.9277 4660.53 4329.08 4438.991 

RR-Hub 50.6623 2.8343 2.8156 2.8561 9.9277 0.6037 0.6047 0.6048 

 
IV. Discussion 

 
In this study, the efficiency of four estimators (LS, RR, 
HM, RR-Hub) for multiple linear regression models were 
examined in the presence of the twin problems of outlier 
and multicollinearity in the data. 

In dataset for which the above two problems are 
absent, the LS estimator with the least MSE of parameters 
estimates was quite efficient among the four estimators 
considered as shown by the results in Table 2. However, 
when outliers are present in the response variable, the HM 
estimator was relatively more efficient than the other three 
estimators (see results in Table 2).  

When only the multicollinearity problem is present in 
the data, the RR with minimum MSE was the best 
estimators among the four considered (see results in Tables 
3 and 4). 

In situations where the data is suffering from the two 
problems of outliers and multicollinearity, the RR-Hub 
estimator was found to be relatively most efficient among 
the four estimators considered as can be observed from the 
results of MSEs in Tables 3 and 4. 

V. CONCLUSION 

In multiple linear regression analysis, using the LS 
estimator for modelling in the presence of outliers and 
multicollinearity can result to less efficient results with 
large standard errors of parameters estimates. This may 

consequently lead to poor predictive power of the model 
and statistical inferences from such model might not be 
reliable.  

Whenever any of the problems outliers in the response 
variable and multicollinearity in the predictor variables are 
suspected, it might be desirable to employ appropriate 
estimators, other than the LS, to fit the regression model 
for better results. 
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