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Abstract - In this research, a new generalized odd 
generalized exponentiated skew-t (GOGEST) innovation 
density for generalized autoregressive conditional 
heteroskedasticity (GARCH) models is proposed. 
Structural properties of the proposed distribution such 
as density and distribution functions, quantile function 
and raw moments were derived. To estimate the 
parameters of the proposed distribution via a 
simulation study, the maximum likelihood estimation 
criterion was used. Application on Bitcoin log-returns 
was carried out to inspect the performance of the 
asymmetric GARCH models with GOGEST innovation 
density relative to five innovation densities in volatility 
modeling. The research results showed that the 
asymmetric GARCH models under GOGEST 
innovation density performed best for the Bitcoin log-
returns conditional variance. More so, in the out-of-
sample performance of the models, the threshold 
GARCH-GOGEST model outperformed the other 
models in terms of superior volatility predictive ability. 
  
Keywords: Asymmetric volatility models, Hybridized 
distributions, Simulation study, Bitcoin, Innovations. 

      I. Introduction 

In financial time series, it is widely known that asset 
returns exhibit some stylized features such as excess 
kurtosis, skewness, heavy tail, volatility clustering and 
leverage effects. This often results in overestimation or 
underestimation of actual volatility estimates. Thus, 
skewness and leptokurtic behaviours of assets returns have 
been modeled using heavy-tailed and skewed distributions 
(Nelson, 1991; Altun et al., 2018). Several authors have 
investigated the performance of the GARCH-type models 
under heavy-tailed distributions like the skew Student-t, 

normal inverse gaussian, skew generalized error, Student-t, 
exponentiated half-logistic skew-t and generalized error 
distribution in estimation and prediction of asset returns 
volatility (Ural and Demireli, 2019; Samson et al., 2020a; 
Samson et al., 2020b; Yelamanchili, 2020; Gyamerah, 
2019; Maree et al., 2017; Kosapattarapim, 2013; Nagamani 
and Tripathy, 2018; Ngunyi et al., 2019; Adubisi et al., 
2022a; Adubisi et al., 2022b). Financial asset volatility is a 
key concern in portfolio allocation, risk management, 
investment decisions, option pricing, microeconomic and 
policy making. In this context, volatility predictions can 
play the role of a trigger factor for the financial markets as 
well as economy (Poon & Granger, 2003). Hence, 
modeling of asset return volatility is important in the field 
of finance given that volatility is widely used as the most 
important factor in financial assets investment 
(Mandelbrot, 1963). 

Harvey and Sucarrat (2013) introduced the EGARCH 
model under the beta-skew Student-t density for accurate 
prediction of daily volatility. Agboola et al. (2018) 
estimated daily volatility for stock index returns by using a 
new generalization of the skew Student-t distribution and 
showed that it outperformed the skew normal, skew 
Student-t and skew generalized error densities. Moreover, 
Agboola et al. (2019) used the same distributional 
assumption for the S&P 500 stock returns and supported 
the use of skewed Student-t for asymmetric power ARCH 
model, since it has the lowest forecast performance 
measures. Harvey and Chakravarty (2008) and Harvey 
(2013) proposed the use of the beta-student-t distribution 
for the exponential GARCH (EGARCH) model in the 
estimation of volatility and able to capture the dynamics 
compared to the existing distributions. The Bayesian 
analysis of a stochastic model with generalized hyperbolic 
skew Student-t distribution with an efficient Markov chain 
Monte Carlo estimation method was considered using 
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simulated and real data (Nakajima & Omori, 2012). Nelson 
(1991) resolved that volatility models which do not permit 
asymmetries in the conditional variance usually produce 
poor volatility forecast. Liu and Hung (2010) found that 
more flexible GARCH-type models are quite adequate in 
volatility prediction for all densities assumptions. As 
concerns the choice of the innovation distribution, Feng 
and Shi (2017) found that the leptokurtic distributions in 
GARCH-type models aided in generating more accurate 
volatility forecasts. However, development of robust 
distributions is still vital in increasing the accuracy of the 
monetary risk system. 

The motivation in developing the new model is to 
create a more flexible distribution with symmetric, right 
and left-skewed, and unimodal features. The aim of this 
research is to propose a new conditional innovation density 
to produce more accurate volatility forecasts than the 
existing commonly used innovation densities in GARCH 
volatility models. For this reason, the generalized odd 
generalized exponentiated skew-t (GOGEST) distribution is 
introduced and it provides a unimodal, skewed and fat-tail 
shapes for the probability density function (pdf). Also, a 
new dynamic asymmetric GARCH-GOGEST model for 
predicting daily volatility is introduced based on various 
asymmetric GARCH-type volatility model with GOGEST 
innovation density given that the existing innovation 
densities are quite incapable of accounting for excess 
kurtosis and skewness in financial datasets.  

This article is structured as follows: Section 2 
presents some structural properties of the GOGEST 
distribution. The GARCH-type models with existing and 
new conditional innovation distributions are presented in 
Section 3. Model selection and forecast evaluation 
measures are given in Section 4. Section 5 presents the 
empirical results of both estimation and prediction while 
conclusion in Section 6. 
 
II  The Generalized Odd Generalized 

Exponentiated Skew-T Distribution 
 
Many cases in real-life situations do not conform to the 
assumption of normality. Hence, the interest of so many 
researchers have been aroused in developing flexible 
distributions which will serve as substitute to the normal 
distribution for modeling datasets with excess kurtosis and 
skewness characteristics. The generalized odd generalized 
exponential (GOGE) family of distributions was 
introduced by Alizadeh et al. (2017). The cumulative 
distribution function (cdf) is given by 
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where  G y and  g y  are the cdf and pdf of the baseline 

distribution. , 0    are two additional shape parameters. 

In this research, the parent distribution is the skew student-
t (ST) distribution introduced by Jones and Faddy (2003). 
The cdf of the skew-t (ST) distribution is given by 
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and the corresponding pdf is given by 
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where,   is the parameter which controls the skewness. 
Now, inserting the function of Jones and Faddy (2003) into 
the function of Alizadeh et al. (2017). The cdf and pdf of 
the GOGEST distribution are obtained, respectively, as 
follows: 
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                                                (6) 
Here, ( )y  and ( )y  are the pdf and cdf of the ST 
distribution, respectively, , 0    are the shape parameter 

and   controls the skewness. 
Figure 1 depicts the plots of the pdf for the GOGEST 

distribution. As shown in Figure 1, the GOGEST 
distribution offers new prospects to model unimodality, 
skewness, leptokurtic and heavy-tailed structures of most 
datasets from different fields. More so, the GOGEST 
distribution is regarded as a good nominee in eliminating 
the lack of modeling capability of existing distributions in 
relations to accurate volatility prediction, since excess 
kurtosis and skewness are common features in most 
financial time series. 
 
III Mathematical Properties Of The 

Gogest Distribution 
 
3.1 Quantile Function 
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The quantile function  Q U ,  0,1U   is derived by 

inverting Equation (5). The quantile function of the 

GOGEST distribution is given by: 
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The quantile function is considered very useful in 
generating random variate from any continuous 
distribution. Therefore, the numerical values of the Median 
(M), skewness (S) and kurtosis (K) provided in Table 1, 
are simulated values of the median, skewness and kurtosis 

using the GOGEST quantile function in Equation (7). The 
results show that the new model can handle negative and 
positive skewed, and leptokurtic datasets. The desity plots 
of the new GOGEST at some selected parameter values is 
presented by Fig 1. 
 

 
Table 1. Numerical values of some useful statistics 

      M S K 
0.5 0.8 0.7 -0.4351 -0.3173 -1.1428 

 1.0 0.9 -0.1700 -0.1801 -0.5791 
 1.2 1.0 -0.035 -0.1181 -0.3656 
 1.7 1.3 0.207 -0.0327 -0.0999 
 2.0 1.8 0.366 0.0019 0.0006 

1.0 0.8 0.7 -0.6153 -0.3173 -1.1428 
 1.0 0.9 -0.2399 -0.1801 -0.5792 
 1.2 1.0 -0.050 -0.1181 -0.3656 
 1.7 1.3 0.293 -0.0327 -0.0999 
 2.0 1.8 0.518 0.0019 0.0006 

2.0 0.8 0.7 -0.8701 -0.3173 -1.1428 
 1.0 0.9 -0.3393 -0.1801 -0.5792 
 1.2 1.0 -0.070 -0.1181 -0.3656 
 1.7 1.3 0.415 -0.0327 -0.0999 
 2.0 1.8 0.732 0.0019 0.0006 
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Figure 1: Density function (pdf) plots of the GOGEST distribution for selected parameter values. 

 
3.2 Linear representation 

In this subsection, the linear representations of the 
probability density and distribution functions which are 
very useful in studying the mathematical properties of the 
GOGEST distribution are derived. Firstly, the expansion of 

the PDF in Equation (5) is obtained by applying the 
generalized binomial series expansion, the density function 
of the GOGEST distribution is expressed as 
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But, 
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Hence, 
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Using the generalized binomial series, the PDF of the GOGEST distribution can be defined as an infinite linear combination 
of the skew-t distribution expressed as 
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If  and  are integers the index i  stops at  1  and k stops at  2j  . When   is non-integer, a more general form is 

expressed as 
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Using the generalized binomial series, the GOGEST density function  f y  is given as 
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Secondly, the series expansion form of the GOGEST distribution function  F y  is expressed as 
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3.3 Moments 

The expression for the gth moment about the origin of the 
GOGEST distribution is derived. Let  , , STY GOGE     

be a random variable, the gth moment of Y about the origin 
is defined as: 
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Taboga (2017) showed that the gth moment in Equation 
(15) can be expressed as  
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In this context,  f y  is the series expansion of the PDF in 

Equation (13). Hence, the gth moment expression of the 
GOGEST distribution is given as: 
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Corollary 1: The incomplete moment of the GOGEST 
distribution is investigated. This suffices that the gth 
incomplete moment of a random variable Y is a function 

 r t  defined as 
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In this context,  f y  is the series expansion of the pdf in 

Equation (13). Hence, the gth incomplete moment of the 
GOGEST distribution is expressed as 
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Simplifying Equation (19), the gth incomplete moment of 
the GOGEST distribution is given as 
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Remark: The first incomplete moment    1 0

t
t yf y dy    

of the GOGEST distribution can be obtained by inserting 
1g   in Equation (20). 

Corollary 2: The characteristics function of the GOGEST 
distribution is investigated. This suffices that the 
characteristics function of a random variable Y is a 

function  Y t  expressed as 
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In this context, g  is the gth moment of the GOGEST 

distribution in Equation (18). The characteristics function 
of the GOGEST distribution is given as 
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where 
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3.4 The Entropies 

The variation of uncertainty in a random variable is normally measured by the entropy. The Rényi entropy is expressed as 
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
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Using the PDF (5),  f y


is expressed in the series expansion form as: 
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Hence, the Rényi entropy of the GOGEST distribution is given as: 
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    (25) 

Simplifying and solving Equation (25) based on Taboga (2017), the Rényi entropy of the GOGEST distribution is given as: 

 
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Similarly, the Tsallis q-entropy is expressed as 



Professional Statisticians Society of Nigeria 
                                         Edited Proceedings of 5th International Conference                                           Vol. 5, 2021 

851 

 

 
© 2021, A Publication of Professional Statisticians Society of Nigeria 
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1

1
q

q Y f y dy
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          , 0q   and 0q     (27) 

Using the steps in Equations (24)-(26), the q-entropy of the GOGEST distribution is given as: 
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3.5 The Order Statistics 

Let 1 2, , , nY Y Y be a random sample from a continuous distribution and 1: 2: :n n n nY Y Y   are the order statistics obtained 

from the sample. The rth order statistic :r nY  is defined as 
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     (29) 

where  G y  and  g y  are the CDF and PDF of GOGEST distribution,  . , .  represent the beta function expression. 

Given that  0 1G y  for 0y  , the expression in (29) can be rewritten as: 
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Inserting (5) and (6) into (30) and applying series expansion, the rth order statistics for the GOGEST distribution is given as 
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Remark: The minimum and maximum order statistics is obtained by setting 1r   and r n  in (31).  
 
IV. The Estimation and Simulation Study 
of the GOGEST distribution 
 
 
 

4.1 Maximum Likelihood Estimation (MLE) 
Let 1 2, , , ny y y be the observed random values from the 

 ; , ,STGOGE y     distribution. Using Equation (6), the 

log-likelihood function of GOGEST is given by 
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where 
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. The partial derivatives with respect to the parameters, the normal equations are derived from 

Equation (32) as follows: 
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The ML estimates ˆ ˆˆ, ,    of the parameters , ,   , are 

the simultaneous solutions of the functions: 0l    , 

0l    and 0l    . The nonlinear functions, i.e., the 

ML estimates cannot be obtained in explicit forms but 
solved numerically via iterative methods. Mathematica, 
MATLAB, R (optim function), Maple or SAS can be 
utilized in finding the parameter estimates. 
 
4.2 Simulation Study 

The performance of the GOGEST parameter estimates is 
examined using simulation study. 10,000 samples of sizes 

50,300n   and 1000  is generated from the GOGEST 
distribution using R-software. The precision of the ML 
estimates is evaluated by using the following performance 
measures: mean estimates (MEs), absolute bias (Absbias), 
mean square errors (MSEs) and root mean square roots 
(RMSEs). 
 

Table 2: Numerical values of the MEs, Absbias, MSEs and RMSEs of Parameters Estimates 

  1.0 1.5 1.3        1.2 1.7 1.5      

n Par. ME Absbias MSE RMSE n Par. ME Absbias MSE RMSE 
50   0.9867 0.0133 0.0600 0.2449 50   1.1627 0.0373 0.0489 0.2211 
   1.7725 0.2725 0.5807 0.7620    1.9369 0.2369 0.3431 0.5857 
   1.4004 0.1004 0.2639 0.5137    1.5823 0.0823 0.1796 0.4238 

300   0.9954 0.0046 0.0234 0.1529 300   1.1760 0.0240 0.0220 0.1485 
   1.6016 0.1016 0.1836 0.4285    1.8159 0.1159 0.1422 0.3770 
   1.3476 1.3476 0.0798 0.2824    1.5585 0.0585 0.0622 0.2495 

1000   0.9968 0.0032 0.0100 0.0998 1000   1.1815 0.2388 0.0119 0.1091 
   1.5450 0.0450 0.0688 0.2623    1.7726 0.1109 0.0706 0.2657 
   1.3238 0.0238 0.0308 0.1756    1.5410 0.1314 0.0295 0.1716 
            
  2.2 2.0 2.5        3.5 3.2 3.0      

n Par. ME Absbias MSE RMSE n Par. ME Absbias MSE RMSE 
50   2.3705 0.1705 0.4590 0.6775 50   3.8316 0.3316 1.0869 1.0425 
   2.0869 0.0869 0.3903 0.6247    3.3826 0.1826 0.8282 0.9101 
   2.4259 0.0741 0.4094 0.6399    2.8747 0.1253 0.7066 0.8406 

300   2.2162 0.0162 0.1382 0.3717 300   3.5214 0.0214 0.3828 0.6187 
   2.0700 0.0700 0.1627 0.4034    3.3147 0.1147 0.3162 0.5623 
   2.5358 0.0358 0.1618 0.4022    3.0557 0.0557 0.2872 0.5359 

1000   2.1917 0.0083 0.0748 0.2734 1000   3.4751 0.0249 0.2108 0.4591 
   2.0547 0.0547 0.0923 0.3037    3.2830 0.0830 0.1657 0.4070 
   2.5422 0.0422 0.0898 0.2997    3.0647 0.0647 0.1587 0.3983 
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The results in Table 2, indicates that the parameter 
estimates are quite stable and very close to the true 
parameter values for the various sample sizes. The mean 
estimates tend to be closer to the true parameter values, 
and the absbias, MSEs and RMSEs decreases as the sample 
size increases. Hence, the MLE is suitable for estimating 
the GOGEST parameters based on the simulation study. 

V.  The Asymmetric GARCH-Type 
Models 

Volatility modeling of financial time series is a vital area 
for both consultants and economic expert. The 
autoregressive conditional heteroscedasticity (ARCH) 
model was developed for modeling time-varying volatility 
(Engle, 1982; Bollerslev, 1986). Asymmetric GARCH-
type models such as the exponential GARCH (EGARCH) 
model (Nelson, 1991), Nonlinear Asymmetric GARCH 
(AGARCH) model (Engle and Ng, 1993), threshold 
GARCH (TGARCH) model by (Zakoian, 1994), 
asymmetric power ARCH (APARCH) model (Ding et al., 
1993), Absolute Value GARCH (AVGARCH) model 
(Taylor, 1986; Schwert, 1990), Quadratic GARCH 
(QGARCH) model (Sentana, 1995) and Glosten-
Jagannathan-Runkle GARCH (GJRGARCH) model 
Glosten et al. (1993) were created to allow for leverage 
effects in the conditional variance. The daily asset log-
return is denoted as tr , and the GARCH (1,1) model is 

expressed as follows: 

2

2 2 2
1 1 2 1
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, . . .

,

t t
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where 0  , 1 0  , 2 0  , tz  is the conditional 

innovation distribution with   0tz   and  var 1tz  . 

The conditional variance and mean are denoted as 2
th  and 

t , respectively. In this research, the EGARCH, TGARCH 

and APARCH models are considered. The EGARCH (1,1) 
model conditional variance is expressed as: 
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 
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where 3  is the leverage effect parameter,  2
tIn h , 

 2
1tIn h   are the conditional log variance for present and 

preceding days, respectively, and 1t   is the 

accompanying error. 
The TGARCH (1,1) model conditional variance is 
expressed as: 

  2 2
1 1 3 1 1 2 1t t t t th I h              (35) 

where 3  is the leverage effect, and 1tI   is an indicator 

function expressed as: 
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The conditional variance specification of the APARCH 
(1,1) is expressed as  

1 1 3 1 2 1( )t t t th h               (36) 

where   is the Taylor (power effect) parameter for the 
Box-Cox transformation. However, the APARCH (1,1) 
model converges to the TGARCH (1,1) model when 1  . 
In the asymmetric GARCH-type models, positive shocks 
have a smaller effect on volatility than negative shocks 
when the parameter 3  is positive. Harvey and 

Chakravarty (2008) noted that the assumption of the 
distribution on the innovations of the GARCH volatility 
models directly impacts on the accuracy of volatility 
estimates. Hence, the rest of this section is dedicated to the 
GARCH models with standardized skew normal and 
heavy-tailed distributions. 

5.1     The Skew Normal Distribution 

For the skew normal distributed innovations, the density 
function is given by 
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where  is the skew parameter and  ,   are the 

location and scale parameters, respectively. 
 
5.2 The Skew Student-t Distribution 

For the skew Student-t distributed innovations, the density 
function is given by 
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where   is the degree of freedom,  .  denote the gamma 

function,    is the asymmetry parameter, and
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5.3    The Skew Generalized Error Distribution 

For the generalized error distributed innovations, the 
density function is given by 
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where   is the degrees of freedom,   is the skew 

parameter, ( 1 1)   ,   1
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  2 2 21 3 4S A     . 

5.4 Generalized Hyperbolic Distribution 

For the generalized hyperbolic distributed innovations, the 
density function is given by
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where  is scale parameter,   is location parameter,  is 

the asymmetry parameter, ,   are real parameters,   is 

the modified Bessel function. 

5.5  Johnson Reparametrized (SU) Distribution 

For the Johnson reparametrized (SU) distributed 
innovations, the density function is given by 

  1

2
; , , , sinh

1

z
f z

z

       




  
   

   
  
 

      
where,   is the density function of  0,1N , ,   are 

location and scale parameters, respectively, while ,   
denote the skew and kurtosis parameters respectively. 
 
5.6 The Standardized Generalized Odd 

Generalized Exponentiated Skew-t 
Distribution 

The standardized GOGEST density is derived by 
introducing arbitrary location and scale parameters   and 

  via the transformation y
z





 . However, Engle 

(1982) defined the errors as an autoregressive conditional 
heteroscedastic process, where error terms ( )t  is 

expressed as 2
t t tz h  , where ( ) 0tz   and 

var( ) 1tz  . The random variable tz  can be expressed as 

follows: 2
t t tz h  and  21t t tz h   . Hence, the 

standardized density function of the GOGEST is given by 
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 (37)  

The log-likelihood function (LL) is given by 
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 (38) 

where  2, , , th     and 2
th  denote the asymmetric GARCH-type volatility models with unknown vector parameters.  

 
VI.  Evaluation of Volatility 

Predictions 

6.1        Model Selection Criteria 

The information criteria are used for the selection of the 
models introduced in Section 3. The accuracy of the 
models is appraised by the modified information criteria of 
Brooks and Burke (2003). The modified AIC and BIC 
criteria are given by 

2 2c LL
AIC

T T
    

    

 log 2ec T LL
BIC

T T
   

where, T  is the number of observations, c is the total 
number of estimated parameters, and LL  denotes the 
estimated log-likelihood value. The model with the least 
AIC and BIC values is regarded as the best performing 
model in terms of the specified conditional innovation 
distribution. 
 
6.2 Forecasts Evaluation 

The prediction performance of the asymmetric GARCH-
type models is evaluated using the mean square error 
(MSE), root mean square root (RMSE), and mean absolute 
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error (MAE). The MSE, RMSE, and MAE for the volatility 
forecasts are given by 
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where ˆ
th  and th  represent the volatility forecast and 

realized volatility, and T  is the sample size. The model 
with the least MSE, RMSE, and MAE values is regarded as 
the most suitable for forecasting the volatility of the daily 
returns. 
 
VII.  Empirical Finding 
 
7.1 Data report 

To appraise the performance of the asymmetric GARCH-
type volatility models in predicting daily volatility, Bitcoin 
(BTC) cryptocurrency price index is utilized. The utilized 
data consist 3402 daily log-returns from 02/02/2012 to 
31/05/2021. The estimation process is carried out using 
3251 daily log-returns for nine years (2012-2020) while the 
remaining 151 daily log-returns in the year 2021 are used 
for assessment of out-of-sample forecasting performance. 
Table 3 presents the summary statistics of the log-returns 
of the Bitcoin (BTC) and the graphical plots are depicted in 
Figure 2. Negative skewness and excess kurtosis are quite 
evident, leading to large Jarque-Bera (JB) test statistic 
value (p < 0.001) indicating that the daily log-returns are 
non-normally distributed. More so, the Lagrange-multiplier 
(LM) test specifies the incidence of ARCH effects in the 
conditional variance. 
 
 
 
 
 
 

Table 3: Summary statistics for the Bitcoin (BTC). 
BTC 

Number of observations 3251 
Mean 0.2604 
Median 0.1534 
Minimum -48.090 
Maximum 30.830 
Standard Deviation 4.4438 
Skewness -0.8566 
Kurtosis 13.3007 
Jarque-Bera 24398 (p < 0.001) 
ARCH (2) 314.71 p < 0.001)  

 
7.2  Estimation 

The asymmetric models are estimated under the skew 
normal (SNORM), skew student-t (SST), skew generalized 
error (SGE), generalized hyperbolic (GHYB), Johnson 
(SU) reparametrized (JSU) and GOGEST innovation 
densities. To obtain the parameter estimates of the models 
under SNORM, SST, SGE, GHYB, JSU densities, the 
rugarch package in R-software is used. The Optim 
function in R-software is utilized for the parameter 
estimation of the models under the GOGEST innovation 
density. Table 4 presents the parameter estimates for the 
EGARCH (1,1), TGARCH (1,1) and APGARCH (1,1) 
models under six innovation densities. The parameter 
estimates of the conditional variance are highly statistically 
significant, and the parameter 3  is significant at standard 

level which shows that the daily log-returns have leverage 
effect. Hence, the impact of the shocks is asymmetric in 
nature which implies that the impact of negative shocks on 
volatility are higher than positive shocks of the same size. 

Tables 5 gives some important statistics for model 
selection, which shows that the EGARCH-GOGEST has the 
highest log-likelihood, and least AIC and BIC values 
relative to other models. Hence, the EGARCH-GOGEST 
model is selected as the best asymmetric model for the 
BTC log-returns conditional variance. 
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Figure 2: Bitcoin (BTC) daily log-returns, squared and absolute log-returns and sample autocorrelations. 

 
There is no clear noticeable pattern in the BTC daily log-
returns. However, there are some persistence in the squared 
and absolute log-returns as depicted in Figure 2(b, c). 
Specifically, the plots show evidence of volatility 
clustering; that is low volatility values followed by low 
volatility values and high volatility values followed by 

high volatility values. More so, the daily log-returns show 
no clear evidence of serial correlation, but the squared and 
absolute log-returns are positively autocorrelated as 
depicted in Figures 2(e, f). 
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Table 4: Parameter estimates of the asymmetric models for the BTC log-returns under six innovation densities. 

 
                Significance levels: 0 ‘***’, 0.001 ‘**’, 0.01 ‘*’, 0.05 ‘.’, 0.1 ‘’, 1 
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For the asymmetric models under the GOGEST density, the 
parameter estimates of the conditional variance are highly 
statistically significant, and the parameter 3  is significant 

at standard level which shows that the daily log-returns 
have leverage effect. Hence, the impact of the shocks is 
asymmetric in nature which implies that the impact of 
negative shocks on volatility are higher than positive 
shocks of the same size. Tables 5 gives some important 

statistics for model selection, which shows that the 
asymmetric models under GOGEST innovation density 
have the highest log-likelihood, and least AIC and BIC 
values relative to other models. However, the EGARCH-
GOGEST model is selected as the best volatility model for 
the BTC log-returns conditional variance given it has the 
least AIC and BIC values. 
 

Table 5: Comparison of the Models for Selection 

Model Log-Likelihood AIC BIC 
EGARCH- SNORM -8930.696 5.4978 5.5090 

EGARCH- SST -8409.936 5.1781 5.1912 
EGARCH-SGE -8418.751 5.1835 5.1966 

EGARCH-GHYB -8405.539 5.1760 5.1909 
EGARCH-JSU -8404.530 5.1747 5.1878 

EGARCH- GOGEST -5929.735 3.6529 3.6678 
    

TGARCH- SNORM -8931.886 5.4985 5.5098 
TGARCH- SST -8404.229 5.1745 5.1877 
TGARCH-SGE -8413.927 5.1805 5.1936 

TGARCH-GHYB -8399.637 5.1723 5.1873 
TGARCH-JSU -8398.837 5.1712 5.1843 

TGARCH- GOGEST -7778.089 4.7900 4.8049 
    

APARCH- SNORM -8930.696 5.4978 5.5090 
APARCH- SST -8409.936 5.1781 5.1912 
APARCH-SGE -8418.751 5.1835 5.1966 

APARCH-GHYB -8405.539 5.1760 5.1909 
APARCH-JSU -8404.530 5.1747 5.1878 

APARCH- GOGEST -6620.921 4.0781 4.0931 
 
 
Table 6 presents the diagnostic tests of the EGARCH-
GOGEST, and other models. The Ljung-Box statistic 
indicates that the squared standardized residuals from the 
fitted models exhibit no sign of serial correlation. 
Likewise, the ARCH-LM statistic indicates that the  
 

 
standardized residuals from the estimated models exhibit 
no additional ARCH processes which implies that the 
conditional variance equations are specified correctly. 
Thus, all the models did well in describing the 
characterizing dynamics features the log-returns. 
 

Table 6: Estimated Models Diagnostic Tests. 

Model 
Ljung-Box 

Statistic 
p-value ARCH-LM Statistic p-value 

EGARCH- SNORM 2.568 0.9998 1.685 0.9982 
EGARCH- SST 3.138 0.9995 2.026 0.9961 
EGARCH-SGE 3.249 0.9993 2.046 0.9960 

EGARCH-GHYB 3.157 0.9994 2.033 0.9961 
EGARCH-JSU 3.155 0.9995 2.036 0.9961 

EGARCH- GOGEST 21.297 0.8784 20.062 0.9149 
     

TGARCH- SNORM 3.429 0.9991 2.641 0.9887 
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TGARCH- SST 4.158 0.9972 3.176 0.9770 
TGARCH-SGE 3.806 0.9983 2.749 0.9867 

TGARCH-GHYB 4.107 0.9974 3.119 0.9785 
TGARCH-JSU 4.114 0.9973 3.129 0.9782 

TGARCH- GOGEST 4.849 0.9933 4.274 0.9341 
     

APARCH- SNORM 2.948 0.9996 2.064 0.9958 
APARCH- SST 4.902 0.9929 3.946 0.9497 
APARCH-SGE 4.436 0.9959 3.395 0.9705 

APARCH-GHYB 4.755 0.9940 3.788 0.9564 
APARCH-JSU 4.798 0.9937 3.839 0.9543 

APARCH- GOGEST 4.179 0.9971 3.499 0.9671 
 
4.3 Forecasts 

The out-of-sample performance of the asymmetric models 
are presented in Table 7, while Table 8 presents the 
comparison of the innovation densities through ranking. 
The evaluation measures indicates that the asymmetric 
models under the GOGEST density have the least mean 
square error (MSE), Root mean square error (RMSE), and 
mean absolute error (MAE) values. However, it indicates 

that the TGARCH-GOGEST model is statistically effective 
and displays superior ability in forecasting the BTC 
volatility relative to others, having the least MSE, RMSE 
and MAE values. More so, the GOGEST innovation density 
has the least total rank value based on the MSE, RMSE and 
MAE for the EGARCH (1,1), TGARCH (1,1) and 
APARCH (1,1) models. 
 

 
Table 7: Forecasts Evaluation of the Estimated Models. 

Model MSE RMSE MAE 
EGARCH- SNORM 23.5393 4.8517 3.5653 

EGARCH- SST 23.5110 4.8488 3.5709 
EGARCH-SGE 23.5394 4.8517 3.5653 

EGARCH-GHYB 23.5153 4.8493 3.5678 
EGARCH-JSU 23.5118 4.8489 3.5695 

EGARCH- GOGEST 22.8307 4.7781 3.4785 
    

TGARCH- SNORM 23.5369 4.8515 3.5652 
TGARCH- SST 23.5114 4.8488 3.5699 
TGARCH-SGE 23.5393 4.8517 3.5653 

TGARCH-GHYB 23.5170 4.8494 3.5673 
TGARCH-JSU 23.5127 4.8490 3.5689 

TGARCH- GOGEST 20.4212 4.5190 3.1792 
    

APARCH- SNORM 23.5221 4.8499 3.5664 
APARCH- SST 23.5115 4.8489 3.5698 
APARCH-SGE 23.5393 4.8517 3.5653 

APARCH-GHYB 23.5170 4.8494 3.5673 
APARCH-JSU 23.5127 4.8490 3.5689 

APARCH- GOGEST 22.7278 4.7674 3.4577 
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Table 8: Forecasts Evaluation – Innovation Distributions Comparison. 

EGARCH (1,1) 
 SNORM SST SGE GHYB JSU GOGEST 

MSE 5 2 6 4 3 1 
RMSE 5.5 2 5.5 4 3 1 
MAE 2.5 6 2.5 4 5 1 

TOTAL 13 10 14 12 11 3 
       

TGARCH (1,1) 
 SNORM SST SGE GHYB JSU GOGEST 

MSE 5 2 6 4 3 1 
RMSE 5 2 6 4 3 1 
MAE 2 6 3 4 5 1 

TOTAL 12 10 15 12 11 3 
       

APARCH (1,1) 
 SNORM SST SGE GHYB JSU GOGEST 

MSE 5 2 6 4 3 1 
RMSE 5 2 6 4 3 1 
MAE 3 6 2 4 5 1 

TOTAL 13 10 14 12 11 3 
 
Overall, the comparison between the volatility models in 
this research largely supports the utilization of the 
asymmetric GARCH model with GOGEST density for 
estimating and forecasting the volatility of the BTC log-
returns. More so, the proposed GOGST innovation density 
seems generally the best for the asymmetric GARCH (1,1) 
models considered in this research. 

VIII. Conclusion 

This research shows that most financial returns have non-
normal features such as heavy-tails, excess kurtosis, 
asymmetric volatility clustering, and skewness. Financial 
return volatility is a significant measure in financial 
decisions, such as option pricing, risk management, and 
portfolio selection, so it is useful to create vigorous driven 
conditional innovation distribution for GARCH-type 
volatility models. In this research, the generalized odd 
generalized skew-t (GOGEST) distribution quite capable of 
modeling skewness, leptokurtic behaviour, and unimodal 
shapes is derive. Volatility modeling of the Bitcoin (BTC) 
cryptocurrency using three asymmetric GARCH models 
with GOGEST innovation density relative to the skew 
normal, skew student-t, skew generalized error, 
generalized hyperbolic, Johnson (SU) reparametrized 
innovation densities in terms of predictive performance 
using three forecast performance measures. It was found 
that asymmetric GARCH models with GOGEST innovation  

 
density are optimally the best models based on model 
selection criteria, and the EGARCH- GOGEST innovation 
density is the most capable for describing the dynamic 
features of the returns as it mirrors the fundamental process 
in relations to leptokurtic innovation, serial correlation and 
asymmetric volatility clustering. The research findings 
confirm that asymmetric GARCH models improve the 
predictive performance. Furthermore, the results validate 
the superiority of the TGARCH-GOGEST model in out-of-
sample forecasting performance over other models for 
Bitcoin volatility modeling.  
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