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Abstract —This study adopts the method of Sufficient 
Dimension Reduction (SDR) to estimate sufficient 
predictors for visualizing the data of crimes against 
pproperties in Nigerian cities and training statical 
classification models that are capable of efficiently 
detecting true safety status of such cities without losing 
information. Modified version of the sliced inverse 
regression (SIR) methods was adopted by replacing the 
usual maximum likelihood covariance estimator by the 
Hybridized Smoothed Maximum Entropy Covariance 
Estimator (HSMEC) proposed by Olorede and Yahya 
in the dimension reduction step. All the seven statistical 
classifiers achieved excellent results based the first 
sufficient predictor estimated by the modified (SIR-
HSMEC) with k-Nearest Neighbour model with one 
optimal neighbour achiving false positive rate of 0% 
and 100% classification accuracy, sensitivity, 
specificity,  and area under the curve, respectively. 
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I. Introduction 

Certainly, we live in a time when moving is second nature 
to us. This movement covers many facets of our lives. We 
move because living in one place for the rest of our lives is 
not a sentence we wish to serve. One good question, 
therefore, is that: do we move to a state where safety is not 
an issue or to a state where safety is a major concern? Are 
there some crime types we could observe more closely to 
know if a state is safe or dangerous base on the actual 
figure of crimes committed therein? What are the states 
with significant frequencies of such crime types in 
Nigeria? These are some of the questions that can be 

answered using efficient classification techniques on 
suitable data on crime for the safety of everyone. 

Consider a classification problem involving a discrete 
univariate binary response Y and p-dimensional predictor 

vector 𝑿 = 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒑
𝑻

 as in the case while whether 
a city has hihe or low level of crime safety according to 
figure of reported cases of such crime type therein. Such 
crime data may be considered to have high dimension even 
with fewwer covariates, p, than number of samples, n, as 
long as p>2. This is because with 𝒑 > 𝟐, the data can no 
longer be visualized in a 2- or 3-dimension. To enhance 
visualization and mitigate this high-dimensionaly, tt may 
be helpful to seek a reduction R(X) that retains most of the 
information in the original data for predicting Y. This is 
called dimension reduction. To avoid this obvious loss of 
information, a reduction R(X) that retains all information 
in the original data for the regression of Y on X is 
preferable. This is called sufficient dimension reduction 
(SDR, Cook, 1998; Li, 1991). The SDR approach assumes 
that the response variable relates to only a few linear 
combinations of the many covariates (Ma & Zhu 2013) and 
seeks a low-dimensional subspace 𝕊 of of the original 
predictor space with 𝒅 <  𝒑 such that 

𝒀 ⫫ 𝑿|𝔹𝑻𝑿,  (1) 

where ⫫ denotes statistical independence (Dawid, 1979), 
and 𝔹𝑻𝑿 denotes the orthogonal projection on to 𝕊. The 
dimension reduction subspace 𝕊(𝔹) is the linear space 
spanned by columns of the loading matrix 𝔹. The goal of 
SDR to identify the central subspace 𝕊 |  (Cook 1996, 
1998, and 1994b), definedned as the column space of 𝔹 
which satisfies (1) with the smallest number of columns d. 
Following Cook 2018, the central subspace, 𝕊 | , is the 
intersection of all the dimension reduction subspaces when 
it is itself a dimension reduction subspace. Consequently, if 
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𝔹 ∈  ℝ𝒑×𝒅 is a basis of 𝕊 |𝑿, then 𝔹𝑻𝑿 contains all 
regression information that X has about Y. 

The sliced Inverse Regression (Li, 1991) method is 
one of the several inverse regression methods existing in 
the SDR literature. These methods do not make any 
assumptions on the distribution of the predictors. Other 
inverse based SDR methods include the Sliced Average 
Variance Estimation (SAVE, Cook 2000; Cook 
& Weisberg 1991), Principal Hessian Directions (PHD, Li 
,1992; Cook 1998), the Iterative Hessian Transformation 
(Cook and Li, 2002), Directional Regression (DR, Li and 
Wang, 2007), the Inverse Regression Estimation (IRE, 
Cook and Ni, 2005), and the Minimum Average Variance 
Estimator (MAVE, Xia, Li, and Zhu, 2002). 

Other cousins of of the inverse based SDR methods 
include the likelihood-based methods such as the 
Likelihood Acquired Directions (LAD, Cook & Forzani 
2009), the Principal Fitted Components (PFC, Cook, 2007; 
Cook & Forzani 2008b), and the Envelope model (Cook, 
Li, & Chiaromonte 2007, 2010). 

The focus of this study is to demonstrate the 
effectiveness of the newly proposed Maximum Entropy 
Covariance estimator (MEC, Olored and Yahya, 2019) as a 
more prudent way in forming convex covariance mixture 
to eradicate loss of covariance information to achieve 
highest classification accuracy in statistical covariance 
based methods, even oin low-dimensional aaplications 
without the need for time-consuming optimization. The 
proposal in this work replaces the  maximum likelihood 
covariance estimate in the dimension reduction step of the 
SIR with the HSMEC estimator to obtain SIR-HSMEC to 
achieve improved prediction accuracy and model 
interpretation through covariance hybridization and 
entropy maximization. 
 

II. MATERIAL AND METHOD 

2.1 Data Source and Description 

Data set spanning twelve crime variables relating to 
offences against properties in the year 2013 across the 
Nigerian cities, as obtained from data base of the Nigeria 
Police Force (NPF) were employed in this study. The 
original data set was unsupervised in nature since it 
contained on number of recorded cases of armed robbery 
(Arbr), demanding with menace (DWM), theft, burglary, 
house breaking (HBkg), store breaking  (StBrkg), false 
pretence (FlsPrtc), forgery, receiving stolen property, 
(RcvgStlnPpt), unlawful possession (UnlfPoss), arson 
(Arson), and other offences (Other.Off) without explicit 
supervising outcome (response) variable, Y. The response 
was manually curated from the recorded cased by finding 
othe overall average number of reported cased for all the 

twelve crime variables  (137.4257) and the average number 
of recorded cased per state for the thirty-six states and the 
federal capital territory (FCT). Any state whose average 
recorded number of cases for all the variables is larger than 
the overall average number of cases is considered to have 
high rate (low safety level) of crimes against properties and 
hence coded 0 while those with mean recorded cases less 
than the overall mean recorded cased were considered 
having low rate (high safety level) and hence coded 1. The 
dummy codes assigned were due the fact that high safety 
was the target class. The low safety level was set as 
baseline. Table 1 further summarized the data. 
 

Table 1: Date Summary 

Class 
Label 

Dummy 
Code 

# Sample 
Per Class 

Sample 
Ratio 

# Features 

High 0 32 32/37 
12 

Offences 
Low 1 5 5/37 

Total 2 classes 37  

2.2 Classifier Performance Evaluation Metrics 

Classification results of the classifiers were tabulated using 
the binary confusion matrix summarized in Table 2.  The 
number correct claasifications including the true positive 
(TP), and the true negative (TN) as well as the 
misclassification results including the false positive (FP), 
and the false negative (FN) were utilized for estimating 
eleven performance evaluation metrics in equations 2 
through 13. 

Table 3: Binary Confusion Matrix 

Predicted Crime 
Actual Crime 

High Low 
High TP FP 
Low FN TN 

𝑵 = 𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶𝑙𝑎𝑠𝑠𝑓𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐶𝐶𝑅) =
𝑇𝑃 + 𝑇𝑁

𝑁
 (2) 

Misclassification Error Rate (MER) = 1 − 𝐶𝐶𝑅 (3) 

Sensitivity (SEN) =  (4) 

Speificity (SPEC) =  (5) 

Balance Accuracy (BA) =  (6) 

FPR =  (7) 

G-Mean = √𝑆𝐸𝑁 × 𝑆𝑃𝐸𝐶 (8) 

Positive Predictive Value (PPV) =  (9) 
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Negative Predictive Value (NPV) =  (9) 

Except equation (3) for which lower value is desired, the 
higher the value of each of the metrics in equations (2) and 
(4) through (9), the better the classifier. 

2.3 Method 

The core idea of the SIR as an inverse based SDR method 
is that: for any vector 𝑏 ∈ ℝ , 𝐸(𝑏 𝑿|𝔹 𝑿) is a linear 
function of 𝔹 𝑿 (Hilafu, 2017 § 2.1 p. 3520). If this is 
true, Hilafu (2017) emphasized that the centred inverse 
moment 𝐸(𝑋|𝑌) − 𝐸(𝑋) belongs to a subspace of 𝑅  
spanned by Σ𝔹, where Σ is MLE covariance of X. The 
implication of this is tha the covariance matrix 𝕄
∶= 𝐶𝑜𝑣[𝐸(𝑋|𝑌)] is degenerate in any Σ − orthogonal to 
Span(𝔹). Consequently, the eigenvectors of the 𝑑 nonzero 
eigenvalues of Σ 𝕄 span the subspace spanned the 
columns of the loading matrix 𝔹 and serves a s the SIR 
estimates. This procedure is summarized in algorithm I.  
 
Algorithm I: SIR 
1. Let 𝚺, 𝑿𝒚,  and 𝑿 be the sample versions of 

𝚺, 𝑬(𝑿|𝒀), and 𝑬(𝑿), respectively. 

2. Estimate 𝕄 for 𝑴 = ∑
𝒏𝒉

𝒏
(𝑿𝒉 − 𝑿)𝑯

𝒉 𝟏 (𝑿𝒉 − 𝑿)𝑻, 

where H and h denote the number of slices and the 
number observations in slice h, respectively. 

3. The eigenvectors 𝚺 𝟏𝕄 corresponding to the 𝒅 
largest eigenvalues serve as the directions of SIR. 

 
For a qualitative response like in this study, number slices, 
h, is set as the natural number of response categories. Li 
(1991) suggested ordering the values of quantitative 
response and slicing it into nonoverlapping ranges, and 
turning these into categories to estimate the conditional 
mean 𝐸(𝑿|𝑌). To achieve SIR-HSMEC, HSMEC was used 
to replace usual MLE covariance stimator in steps of 2 and 
3 of Algorithm I.  

III. APPLICATIONS 

To investigate the performance of the SIR-HSMEC 
method, only the first sufficient predictor was utilized as 
the single predictor in the subsequent classification 
example to evaluate the effectiveness of five standard 
statistical classifiers in discriminating Nigerian cities  
according to their level crimes against property safety 
level. These classifiers including: the Classification Trees 
(CTree, Brieman et al., 1984; Ripley, 1996), The k-Nearest 
Neighbors (k-NN,Ripley, 1996, Venbles and Ripley, 2002) 

with only one optimal number of neighbour (i.e. 1-NN), 
the Linear Discriminant Analysis (LDA, James et al., 
2013; Ripley, 1996, Venables abd Ripley, 2002), , The 
quadratic Discriminant Analysis (QDA, James et al., 2013; 
Ripley, 1996, Venables abd Ripley, 2002), the Random 
Forest (RF, Brieman, 2001; Breiman, 2002), the Neive 
Bayes classifier, and the Logistic Classifier (James et al., 
2013) were 
trained and validated using 80:20 holdout scheme. All 
computations were done using the version 4.1.0 of 
the R software for statistical computing and graphics (R 
Core Team, 2021). 

Table 4: SIR-HSMEC Based Classifier Performance 
Evaluation (%) 

Metrics LR RF QDA LDA NB 1-NN CTree 

Accuracy 0.71 0.86 0.57 0.71 0.57 1.00 0.86 

Sensitivity 0.80 0.80 0.40 0.60 0.40 1.00 0.80 
Specificity 0.50 1.00 1.00 1.00 1.00 1.00 1.00 
BA 0.65 0.90 0.70 0.80 0.70 1.00 0.90 

G-Mean 0.80 0.89 0.63 0.77 0.63 1.00 0.89 

FPR 0.50 0.00 0.00 0.00 0.00 0.00 0.00 

PPV 0.80 1.00 1.00 1.00 1.00 1.00 1.00 

NPV 0.50 0.67 0.40 0.50 0.40 1.00 0.67 

AUC 0.65 0.83 0.70 0.75 0.70 1.00 0.83 

 
Based on results presented in Table 4, the SSIR-HSMEC 
estimator is successful with all classifiers with false 
positive rates of 0% except the Logistic classifer which had 
50% false positive rate. Except the QDA and the NB 
classifiers which achieved sensitivity of 40% each, all 
classifiers achieved at least 60% sensitifity. This implies 
that these classifiers are correctly detect cities with high 
safety level at least 60% of the time. Except the logistic 
classifier which can only detect cities with low safety 
levels 50% of the times, all other classifiers can detect 
cities with low level of crimes against property safety 
100% of the time. In terms of balance of classification 
ability between sensitivity and specificity, all the classifiers 
achieved good balance accuracy and geometric mean. The 
least balance accuracy  (BA) and geometric means 
achieved by the classifiers are 65%  (Logistic BA) and 
63% (QDA G-Mean), respectively.   
All the classifiers achieved 100% positive predictive value 
except the logistic classifier which achieved PPV of 80%. 
This implies that If these classifiers detect high safety 
level, a low rate of crimes against property is detected at 
least 80% of the time. The least negative predictive value 
achieved by the classifiers is 40% (QDA and NB). With 
least area under curve value of approximately, 65%, it is 
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evident that all the classifiers are better than a random 
classifier. 

Overall, the k-Nearest Neighbour with 1 optimal 
neighbour is the best classifier for the classification task in 
this study. It consitently ranked best among all the 
classifiers evaluated across all the performance metrics. 
 

IV. CONCLUSION 

The proposed SIR-HSMEC fully addresses loss of 
covariance information in classification problems. The 
developed is recommended whenever analysis goal is to 
extract core relevant information hidden in the city crime 
safety discrimination problem. This work has demonstrated 
that the proposed MEC estimator efficiently deals with 
singularity and instability of sample covariance estimate in 
SDR applications without requirement for time-consuming 
covariance estimation procedures. The proposed MEC 
estimator can also be used in applications other than SDR 
to circumvent covariance instability. The eigenvalues of 
the HSMEC are well-conditioned and are positive definite 
thereby providing a positive and invertible plug-in 
covariance matrix needed in the SDR step. It is, therefore, 
evident that consistent classifiers with just one SIR 
predictor can be developed. With this single predictor, 
many classifiers whose performance would have been 
otherwise disrupted by noise in the data can now achieve 
almost perfect classification results. 
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