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Abstract — In this paper, a new k-means clustering 
method is proposed which addresses the initial cluster 
center problem in the k-means algorithm based on binary 
search techniques, and it also updates cluster centers 
(centroid). In the initialization phase, the initial cluster 
centers are generated using the modified binary search 
property approach, while in the updating phase, cluster 
centroids are updated using an algorithm depending on if 
a point is added to a cluster or a point is removed from a 
cluster. Various results showed that the proposed method 
performed favorably with four of the existing methods: 
Lloyd, MacQueen, Faber, and Astrahan methods 
considered in terms of accuracy, efficiency, and 
minimization of the within-cluster sum of squares for k 
clusters both in the simulation and in the real-life data 
situations.  
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      I. Introduction 

Clustering is a branch of statistical multivariate analysis 
and an unsupervised classification mechanism in pattern 
recognition (Kaufman and Rousseeuw, 1990; Jain et al., 
2000). It is a method for classifying like groups of a data 
set into the same cluster and unlike groups into different 
clusters (MacQueen, 1967; Anderberg, 1973; Hartigan, 
1975; Everitt et al., 2011; Mirkin, 2013; Yuan and Yang, 
2019). Cluster analysis is a powerful data exploratory and 
descriptive approach to forming data groups and it reveals 

the features and structure information of a given data set 
and is carried out purely based on similarities or 
dissimilarities (Johnson and Wichern, 2002). Cluster 
analysis could be divided into the following categories: 
hierarchical clustering (Hartigan, 1975; Kaufman and 
Rousseeuw, 1990), mixture-model clustering (McLachlan 
and Basford, 1988; McLachlan and Krishnan, 1997), 
objective-function-based clustering, and partition 
clustering (Bezdek, 1981; Yang, 1993). 
         The aim of classification is the difficult task of 
accurately grouping n points (objects) into K homogeneous 
clusters. There are many algorithms developed for data 
clustering; of these, perhaps the best-known of it is the k-
Means clustering (Ball and Hall, 1967; Chan et al., 2004). 
The K-Means partitions a data set into k non-overlapping 
clusters so that a point 𝑥௜ ∈ 𝑋 = {𝑥ଵ, 𝑥ଶ, … , 𝑥௜} is assigned 
to a single cluster 𝑠௞ ∈ 𝑆 = {𝑠ଵ, 𝑠ଶ, … , 𝑠௄} through the 
iterative minimization of the criterion in Equation (1). 

𝑊(𝑆, 𝐶) =  ∑ ∑ 𝑑(𝑥௜ , 𝑐௞)                                (1)௜∈௦ೖ
௄
௞ୀଵ     

where 𝑑(𝑥௜ , 𝑐௞) is the dissimilarity between 𝑥௜ and its 
respective centroid 𝑐௞ ∈ 𝐶 = {𝑐ଵ, 𝑐ଶ, … , 𝑐௄}, the center of 
gravity of the cluster 𝑠௞. The k-Means criterion allows the 
use of any distance function. 
          The purpose of this paper is to propose a k-means 
clustering method that generates initial cluster centers 
using a binary search approach and also updates cluster 
centroids depending on if a point is added to a cluster or a 
point is removed from a cluster and also compares it with 
existing ones like Lloyd’s and MacQueen’s methods. 
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The rest of this paper is organized as follows: section 2 
discusses the materials and methods which consist of 
methods like Lloyd, MacQueen, Faber, Astrahan, and the 
proposed k-Means clustering method. Furthermore, section 
3 is centered on experimental results and discussion, while 
section 4 is the conclusion of the paper. 

 
.                     II. Materials and Methods 

Several k-means clustering methods were aimed to classify 
points or objects to be analyzed into well-separated groups 
(clusters). Four k-means clustering methods and the 
proposed method will be discussed in this paper. The 
rationale behind this developed method is based on the 
assumption that an optimal clustering solution with k 
clusters can be obtained through local search.   
        To be able to use any of the methods, the number of 
clusters present in the data need to be known; multiple runs 
or trials will be necessary to find the best number of 
clusters. There is no best method, as the tendency of 
generating global optimum depends on the characteristics 
of the data set, size, and the number of variables in the 
cases. The k-means clustering methods have two phases of 
iteration namely: the assignment or initialization phase 
which involves an iterative process where each data point 
is assigned to its nearest centroid using any metric of 
choice; the next is the centroid update phase, where 
clusters centroids are updated given the partition obtained 
by the previous phase. The iterative process stops when no 
data point change clusters or some maximum number of 
iterations is reached. 

2.1 Lloyd’s Method 

Lloyd (1982) proposed a method that is widely known as 
the standard k-means algorithm; it is a batch algorithm that 
is based on the minimization of the average squared 
Euclidean distance between the data items and the cluster 
centers and it treats the data set as a discrete distribution. 
The error function for a discrete distribution is defined as 

𝐸 = ∑ ∑ 𝑓(𝑥)𝑑(𝑐௜ , 𝑥௜)௡
௝ୀଵ

௞
௜ୀଵ   (2) 

In Equation (2) above, 𝑑(𝑐௜ , 𝑥௜) is the distance function of 
the data point 𝑥௜  and cluster center 𝑐௜ . The first step of the 
algorithm begins with choosing the number of clusters k 
and its initial centroids or cluster centers. It could be done 
by either using k random observations or from the k 
observations that are the farthest from one another in the 
data space. Initialization of the centroids occurs only once, 
and once the initial centroids have been chosen, iterations 
are done in the following two steps. First, the data set is 
assigned to cluster centroids (centers), using any of the 

distance metrics. All cases assigned to a centroid are said 
to be part of the centroid subspace c (Rd) (Morissette and 
Chartier, 2013). Second, update the value of the centroid 
by using the mean of the data points (cases) assigned to the 
centroid. 

Algorithm 1: The Lloyd’s (Standard) Algorithm. 

1.   Choose k data objects representing the cluster centroids. 

2.  Assign each data object of the entire data set to the cluster 
having the closest centroid. 

3. Compute a new centroid for each cluster by averaging the data 
observations belonging to the cluster. 

4.  If at least one of the centroids has changed, go to step 2, 
otherwise go to step 5 

5.  Output the clusters. 

2.2 MacQueen’s Method 

MacQueen (1967) proposed MacQueen's algorithm, which 
is often referred as the basic k-means algorithm which is an 
online or incremental algorithm. MacQueen's method is 
similar to the Lloyd’s Method, but the main difference is 
that the centroids are updated by re-calculating the points 
(cases) any time it is moved. Once the initial centroids 
have been chosen in the same way as Lloyd’s algorithm, 
the iterations follow:  
         For each case (𝑥௜) in turn, after arbitrarily partitioning 
points into clusters, we compute the coordinates (𝑥̅௜

ᇱ௦) of 
the cluster centroid (mean), likewise, the Euclidean 
distance is computed for each point from the group 
centroids and reassigned each point to the nearest group. If 
a point is moved from its initial position, the cluster 
centroid must be recalculated or updated before computing 
the squared Euclidean distance. 
      If the centroid of a case belongs to the nearest 
subspace, no change is made. If another centroid is closest 
to the subspace, the case is re-assigned to the other 
centroid and the centroids for both the old and new 
subspaces (centers) are recalculated as the mean of the 
cases. When we see that each point is currently assigned to 
the clusters with the nearest centroid, the process stops. 

Algorithm 2: The MacQueen’s (Basic) Algorithm. 

1. Choose k points as initial cluster centroids. 

2. Assign each object to the cluster that has the closest centroid. 
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3. When all objects have been assigned, re-compile the positions 
of the k centroids. 

4. If at least there is a change in one of the centroids, repeat step 2 
and 3, otherwise go to step 5. 

5. Output the clusters. 

2.3 Faber’s Method 

Faber (1994) proposed the Faber’s method which is 
popularly known as the continuous k-means algorithm. The 
continuous k-means algorithm is faster than the standard k-
means algorithm and it is also different from the standard 
k-means algorithm in two ways.  

First, the reference points in the continuous k-means 
algorithm are chosen as a random sample from the whole 
population of data points, while in the standard k-means 
algorithm the initial reference points are chosen more or 
less arbitrarily.  

Secondly, the way the data points are treated during 
the update process; that is during the iteration, the standard 
k-means algorithm examines all of the data points in 
sequence while the continuous k-means algorithm 
examines only a random sample of data points. If the data 
set is very large and the sample is a representative of the 
data set, the continuous k-means algorithm should 
converge much faster than the algorithm that examines 
every point in the sequence. To be precise, the continuous 
k-means algorithm adopts MacQueen’s method of updating 
the centroids during the initial partitioning, when the data 
points are first assigned to clusters (Faber, 1994). 
      Theoretically, random sampling represents a return to 
Macqueen’s original concept of the algorithm as a method 
of clustering data over a continuous space. In Macqueen’s 
formulation, the error measure 𝐸௜ for each region 𝑅௜ is 
given by 
 
𝐸௜ = ∫ 𝑓(𝑥) ∥ 𝑥 − 𝑧௜ ∥ଶ 

௫∈ோ೔
𝑑𝑥                                   (3) 

where 𝑓(𝑥) is the probability distribution function, which 
is a continuous function defined over the space, 𝑥 is the 
data point and 𝑧௜ is the centroid of the region 𝑅௜; while 
𝐸௜  is the total error measure. Hence, a large set of the 
discrete data point can be seen as a large sample as well as 
a good estimate of the continuous probability density 𝑓(𝑥). 
Then it suffices that a random sample of the data set can 
also be a good estimate of 𝑓(𝑥). Such a sample yields a 
representative set of cluster centroids and a reasonable 
estimate of the error measure without using all the points in 
the original data set. 

2.4 Astrahan Method 

      Astrahan (1970) proposed a method that begins with 
the selection of a large number of cluster centers scattered 
throughout the measurement space. These are components 
of the natural clusters being sought and cluster boundaries 
are determined by assigning each point to its nearest 
center. The center of each cluster is then recalculated. This 
assignment and center recalculation process is repeated 
until it converges, as indicated by some measure of cluster 
compactness. The natural clusters are then approached by a 
process of combining the closest clusters interspersed with 
reassignment and center recalculation. 

Algorithm 3: The Astrahan’s Algorithm. 

1. Set 𝑑ଵ =
ଵ

௡(௡ିଵ)
∑ ∑ ฮ𝑦௜ − 𝑦௝ฮ௡

௝ୀ௜ାଵ
௡ିଵ
ଵୀଵ . 

2. Pick the 𝑦௜ ∈ 𝑌 entity with the largest density within 
the 𝑑ଵ radius; there should be at least a distance of 𝑑ଵ 
between 𝑦௜ and all the other centroids. 

3. If the number of centroids is smaller than k, return to 
step 2. 

2.5 The Proposed Method 

For the initialization phase of the proposed method, the 
initial cluster points are generated by using the unique 
property of the binary search algorithm to find the value of 
the middle point given as 

𝐴[𝑀𝑖𝑑] =
𝐴[𝑏𝑒𝑔] + 𝐴[𝑒𝑛𝑑]

2
                         (4) 

The above property of the binary search algorithm is 
modified to generate the initial cluster point for k-means 
where 

 A[beg] is replaced by A[max] 
 A[end] is replaced by A[min] 
 2 is replaced by k number of clusters 
 A[mid] is replaced by any variable such as M 
 Plus symbol is replaced by minus symbol 

Now, Equation (4) is formulated in another form as 

𝑀 =
𝐴[𝑚𝑎𝑥] − 𝐴[𝑚𝑖𝑛]

𝑘
                                             (5) 

The generalization of Equation (5) is written as 

𝑀௜ =
𝑚𝑎𝑥(𝐴௜) − 𝑚𝑖𝑛(𝐴௜)

𝑘
                                              (6) 
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Equation (6) is used to calculate the value of the variable 
M that specifies the range of the initial cluster center 
(Kumar and Sahoo, 2014). The initial clusters for the 
proposed method are generated using Equation (7) 

𝐶௄ = min(𝐴௜) + (𝑘 − 1)𝑀                                               (7) 

For the updating phase of the proposed method, the cluster 
centroids will be updated or recalculated before computing 
the squared Euclidean distance. The 𝑖𝑡ℎ coordinate, where 
𝑖 = 1,2, … , 𝑘 of the centroid is updated using Equations (8) 
and (9) below: 

𝐶௜ , 𝑛𝑒𝑤 =
𝑁௞𝐶௜ + 𝐶௜௝

𝑁௞ + 1
                                                   (8) 

If the 𝑗𝑡ℎ point is added to the cluster 

𝐶௜ , 𝑛𝑒𝑤 =
𝑁௞𝐶௜ − 𝐶௜௝

𝑁௞ − 1
                                                 (9)  

If the 𝑗𝑡ℎ point is removed from the cluster 

Here 𝑁௞ is said to be the number of points (cases) in the 
old cluster with centroid 𝑐் = (𝐶ଵ, 𝐶ଶ, … , 𝐶௄) or perhaps 
the cluster size and centroid 𝐶௄ is a multidimensional 
vector that minimizes the sum of square's distance to 
clusters elements. If a point or case is closest to the 
centroid of a particular subspace where the case is not 
moved to another cluster implies that the case will not be 
reassigned but if a case is closest to the centroid of a 
particular subspace where the case is moved to another 
cluster implies that the case will be reassigned and updated 
(Oti, et al. 2019). The stopping rule is to end when there is 
no further change of cluster membership observed. 

The Proposed K-Means Algorithm [Data set (n) and k] 

1. Set the number of clusters (k) where 𝑘 =
1,2, … , 𝑝. 

2. Generate the range of the initial cluster centers 
using Equation (5). 

3. Obtain the initial cluster centers using Equation 
(6). 

4. Calculate the squared Euclidean distance 
𝑑ଶ(𝑥, 𝑦) = ∑ (𝑥௜ , 𝑦௜)ଶௗ

௜ୀଵ  and apply minimum 
distance rule to determine what cluster list a data 
point, I should be assigned to. 

5. Update within cluster centroid, 𝐶௞, using Equating 
(8) or (9) depending on if a point is added to a 
cluster or a point is removed from a cluster. 

6. The stopping rule is to end the iteration when 
there is no further change of cluster membership 
observed. 

7. Output results. 

 
III.  Results and Discussion 

This section shows the performance comparison of the 
modified k-means method and the existing six k-means 
clustering methods using R statistical software (R version 
3.2.2) that supports window 64 bit operating system. We 
conducted experiments using one simulated data set and 
two real-life data sets to ensure the efficiency of the 
proposed k-means method. The number of clusters k used 
are two and three, since research has proven that the 
optimal number of clusters k will either be two, three, or 
four using methods like elbow, the silhouette, and the gap 
statistic methods (Kaufman and Rousseeuw, 1990).  
        The performance of the proposed method was 
evaluated using total intra-cluster variance and accuracy 
parameters, after which was ranked. 
 
Total intra-cluster variance: The total intra-cluster 
variance is defined as the sum of the squared distance 
between points and the corresponding centroid. That is; 
𝑊(𝐶௄) = ∑ (𝑥௜ − 𝜇௞)ଶ

௫೔ఢ௖ೖ
 where 

 𝑥௜ is the data point belonging to the cluster 𝑐௞. 
 𝜇௞ is the mean value of the points assigned to the 

cluster 𝑐௞. 

Accuracy: Accuracy is defined as the ratio of the total 
number of correctly classified instances divided by the 
total number of correctly plus incorrectly classified 
instances denoted by Acc. in percentage. 

3.1. Simulated Data 

The simulated data was generated randomly from a 
Gaussian (Normal) distribution with a dimension of 300 
rows(𝑚 = 1,2, … ,300), n = 60 and 2 columns (categories 
or attributes) that are divided into two and three clusters 
(that is, k = 2,3). The 60 data points are sampled as 
follows: The first 30 points are sampled uniformly at 
random from a Gaussian distribution with 𝜇 = −1 and 𝜎 =
1, while the remaining 30 points are sampled uniformly at 
random from a Gaussian distribution with 𝜇 = 1 and 𝜎 =
1. For each of the remaining 𝑚 − 1 dimensions, all 60 
points are sampled uniformly at random from a Gaussian 
distribution with 𝜇 = 0 and 𝜎 = 1. Thus, this obtained a 
number of well-separated Gaussians with the true centers 
providing a good approximation to the optimal clustering.  
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Shown below is the summary table of the results of 
experiments and data analysis of six existing methods 

when the number of clusters k is two and three 
respectively: 
 

Table 1: Summary results of simulated data when the number of clusters k = 2 and 3. 
 

 
Methods 

When K = 2 When K = 3  
 

Combined 
Rank 

𝜇 𝜎 Acc.(%) Rank 𝜇 𝜎 Acc.(%) Rank 

Lloyd 1.58 0.52 75.4 3 2.25 0.78 71.4   5 8 
MacQueen 1.50 0.50 78.1 2 1.92 0.71 82.0   2 4 
Faber 1.72 0.55 73.7 4 2.30 0.75 79.7   4 8 
Astahan 1.90 0.62 69.5 

 
5 2.14 0.73 81.3   3 

8 

Proposed 
Method 

1.45 0.42 84.0 1 1.76 0.68 84.6   1 
2 

 
From the above results of the simulation generated 
randomly, when the number of clusters k = 2, the proposed 
method performed best with a minimum standard deviation 
of 0.42 and accuracy rate of 84 percent; and when the 
number of clusters k = 3, the proposed method performed 
better than the existing method with a minimal standard 
deviation of 0.68 and accuracy rate of 84.6 percent 
considering the fact that the variance (the total within-
cluster sum of squares) is minimized; it measures the 
compactness (i.e. goodness) of the clustering which is 
meant to be as small as possible, also, high accuracy 
indicates how better the method is. 

3.2. Real-Life Data 

To understand how efficient these methods are under more 
practical circumstances, we run a number of experiments 

on two data sets which consist of the iris data set, and the 
breast cancer Wisconsin (diagnostic) data set. The two data 
sets are from UC-Irvine Machine Learning Repository. 
Each experiment involves solving k-means problem on a 
set of points in a real dimensional space. 

3.2.1. Iris Data Set 

       The iris flower data set is a multivariate data set with 
150 rows (instances) which is divided into 3 instances 
each, where each class refers to a type of iris plant (iris 
setosa, iris versicolor, and iris virginica): the number of 
columns (attributes) is 4 which consist of sepal length, 
sepal width, petal length and petal width (Fisher, 1936). 
The summary table of the results of the experiments when 
the number of clusters k is two and three are shown in 
Table 2. 

Table 2: Summary results of iris data when the number of clusters k = 2 and 3. 

 
Methods 

When K = 2 When K = 3  
 

Combined 
   Rank 

𝜇     𝜎 Acc.(%) Rank   𝜇 𝜎 Acc.(%) Rank 

Lloyd 1.35 0.40 81.3 3 1.56 0.79 82.8   2 5 
MacQueen 1.30 0.35 83.5 2 1.51 0.74 85.2   1 3 
Faber 1.35 0.48 76.5 5 1.53 0.84 81.5   4 9 
Astrahan 1.46 0.45 80.2 4 1.87 0.92 77.4   5 9 
Proposed 
Method 

1.26 0.32 89.7 1 1.55 0.80 82.4   3 
4 
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From the above experiments and summary table on the iris 
data set, it is observed that when the number of clusters k = 
2, the proposed method performed better than the other 
existing methods with a standard deviation of 0.32 and 
89.7 percent accuracy, and when the number of clusters k = 
3, the MacQueen’s method performed better with a 
standard deviation of 0.74 and accuracy of 85.2 percent, 
while the proposed method performed better than Faber’s 
method and Astrahan’s method with a minimal standard 
deviation of 0.80 and accuracy of 82.4 percent. 

3.2.2. Breast Cancer Wisconsin (Diagnostic) Data Set 

       The breast cancer Wisconsin (diagnostic) data set is a 
multivariate data from UC-Irvine Machine Learning 
Repository which consist of 569 number of instance and 36 
numbers of attributes. The summary table of the results of 
the experiments when the number of clusters k is two and 
three respectively is shown in Table 3. 

 

Table 3: Summary results of breast cancer Wisconsin (diagnostic) data when the number of clusters k = 2 and 3. 
 

 
Methods 

When K = 2 When K = 3  
 

Combined 
   Rank 

𝜇     𝜎 Acc.(%) Rank   𝜇 𝜎 Acc.(%) Rank 

Lloyd 1.08 0.269 91.4 2.5 1.59 0.78 67.8   5 7.5 
MacQueen 1.08 0.269 91.4 2.5 1.17 0.60 86.3   1 3.5 
Faber 1.28 0.305 90.8 4 1.53 0.73 68.1   4 8 
Astrahan 1.36 0.346 87.2 5  1.49 0.66 73.5   3 8 
Proposed 
Method 

1.01 0.266 92.1 1 1.44 0.63 76.2   2 3 

 
It was observed that when the number of clusters k = 2, the 
proposed method performed better than the other methods 
with a minimal standard deviation of 0.266 and an 
accuracy of 92.1 percent. When the number of clusters k = 
3, the MacQueen’s method outperformed every other 
method with a standard deviation of 0.60 and an accuracy 
of 86.3 percent. The performance of the proposed method 
was relatively more efficient than Lloyd’s method, Faber’s 
method and Astrahan’s method with a standard deviation 
of 0.63 and an accuracy of 76.2 percent. From the 
combined ranking of the breast cancer Wisconsin 
(diagnostic) data set, our proposed method is the best in 
minimization of the total intra-cluster variance.  

IV. Conclusion 

In this paper, we have presented a new k-means clustering 
method that uses the modified property of the binary 
search algorithm to generate the initial cluster center at its 
initialization (assignment) phase, while the updating phase 
of the proposed method updates the within-cluster centroid, 
𝐶௞, using Equation (8) or (9) depending if a point is added 
to a cluster or if a point is removed from a cluster. The 
proposed method performed favorably in comparison with 
existing methods in terms of minimizing the total intra-
cluster variance. From the experimental summary results 
considering the combined ranks, the new k-means method 

was more effective than most existing methods both in 
simulation and in real-life data sets used when the number 
of clusters k = 2 and 3. 

Acknowledgement 

The authors thank the reviewers and editors for their 
worthwhile comments and suggestions. 

References 

Anderberg, M. R. (1973). Cluster Analysis for 
Applications. New York: Academic Press. 

Astrahan , M. M. (1970). Speech analysis by clustering or 
hyperphonene method: Issue 124 of Memo (Stanford 
Artificial Intelligent Project). 

Ball, G. H. and Hall, D. J. (1967). A clustering technique 
for summarizing multivariate data: Bahavioral Science 
12(2), pp. 153-155. 

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy 
Objective Function Algorithm. Plenum Press New 
York. 

Chan, E. Y., Ching, W. K., Ng, M. K. and Huang, J. Z. 
(2004). An optimization algorithm for clustering using 
weighted dissimilarity measure. Pattern recognition; 
37(5), pp. 943-952.   

Everitt, B., Landau, S., Leese, M., Stajl, D. (2011). Cluster 
Analysis, 5thedition, John Wiley and Sons.  



Professional Statisticians Society of Nigeria 
                                         Edited Proceedings of 5th International Conference                                           Vol. 5, 2021 

791 

 

 
© 2021, A Publication of Professional Statisticians Society of Nigeria 

 

Faber, V. (1994). Clustering and the continuous k-means 
algorithm: Los Alamos Science, 22, 138-144. 

Fisher, R. A. (1936). ”The Use of Multiple Measurements 
in Taxonomic Problems, “Annals of Eugenics, 3, 179-
188. 

Hartigan, J. A. 1975. Clustering Algorithms. New York: 
John Wiley and Sons. 

Jain, A. K., Duin, R. P. W. and Mao, J (2000). Statistical 
Pattern Recognition: A review. IEEE Transaction on 
Pattern Analysis and Machine Intelligence 22,4-37. 

Johnson, R. A. and Wichern, D. W. (2002). Applied 
Multivariate Statistical Analysis: 5th Edition, 
Eaglewood Cliffs, NJ: Prentice-Hall. 

Kaufman, L., and Rousseeuw, P. J. (1990). Finding Groups 
in Data, An Introduction to Cluster Analysis. Wiley 
Series, New York: John Wiley and Sons. 

      Kumar, Y and Sahoo, G. (2014). “A New initialization 
method to originate initial cluster centers for k-means 
algorithm”. In: International Journal of Advanced 
Science and Technology, Vol.62. pp. 43-54.  

Lloyd, S. (1982). Least squares quantization in PCM. IEEE 
Transaction on Information Theory, 28 (2), 129-137. 

MacQueen, J. (1967). Some methods for classification and 
analysis of multivariate observations, In Proceedings 
of the Fifth Berkeley Symposium on Mathematical 

Statistics and Probability, (1), 281-297. Berkeley, CA: 
University of California Press. 

McLachlan, C. J. and Basford, K. E. (1988). Mixture 
Models: Inference and Application to Clustering. 
Marcel Dekker, New York. 

McLachlan, C. J. and Krishnan, T. (1997).The EM 
Algorithm and Extensions. Wiley, New York. 

      Mirkin, B. (2013). Clustering: A Data Recovery Approach, 
Second Edition (Chapman and Hall/CRC Computer 
Science and Data Analysis). 

Morissette, L. and Chartier, S. (2013). The k-means 
clustering technique: General considerations and 
implementation in Mathematica. Tutorials in 
Quantitative Methods for Psychology, 9 (1), 15-24. 

Oti, E. U., Onyeagu, S. I. and Slink, R. A. (2019). A 
modified k-means clustering   method for effective 
updating of cluster centroid: Journal of Basic Physical 
Research, 9(2), 123-137.  

Yuan, C. and Yang, H. (2019). Research on k-value 
selection method of k-means clustering algorithm. 
Multidisciplinary Scientific Journal, 2(2), 226-235.  

Yang, M. S. (1993). A Survey of Fuzzy Clustering, 
Mathematical and Computer Modeling 18, 1-16.. 

 

 

 


