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Abstract — The new weighted Weibull distribution 
is a two-parameter lifetime model with high 
flexibility for analyzing real-life data. It has a 
scale parameter and a shape parameter 
responsible for the flexibility in the distribution. 
With all the importance and necessity of 
parameter estimation theory in model fitting and 
application, it has not been established that a 
particular estimation method is better for any of 
these two parameters of the new weighted Weibull 
distribution. Therefore, this paper focuses on the 
development of Bayesian estimators for the scale 
parameter of the new weighted Weibull 
distribution using a non-informative prior 
distribution (Jeffery) under the Quadratic loss 
function (QLF). These results are compared with 
the maximum likelihood estimation method using 
Monte Carlo simulations. To compare the 
efficiency of the two estimation methods, the mean 
square error (MSE) has been used as a criterion 
for choosing the best estimator. 
 
Keywords - Weighted Weibull distribution; Bayesian 
analysis; Jeffrey Prior; Quadratic Loss function; MLE; 
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i. Introduction 

Some standard probability distributions have been 
used over the years for modeling real-life datasets 
however research has shown that most of these 
distributions do not adequately model some of these 
heavily skewed datasets and therefore creating a 
problem in statistical theory and applications. 
Recently, numerous extended or compound 
probability distributions have been proposed in the 
literature for modeling real-life situations and these 

compound distributions are found to be skewed, 
flexible and better in statistical modeling compared to 
their standard counterparts ([1]- [14]).  

Due to the fact above, [15] developed a new 
weighted Weibull distribution (NWWD) with three 
parameters (two shapes parameters and a scale 
parameter). This distribution is skewed and flexible 
with an increasing hazard rate and different shapes 
and also performed better than the Weibull 
distribution based on applications of the models to 
three-lifetime datasets [15].  

In [15], the probability density function (pdf), 
the cumulative distribution function (cdf), survival 
function, hazard function, and quantile function (qf) 
of the NWWD are respectively defined as: 
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A graphical representation of the above functions 
using some arbitrary parameter values is displayed in 
Figure 1: 
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Fig. 1: Plots of the PDF and of the NWWD for 

Selected Parameter Values. 
 

Estimation of parameters in a distribution differs by 
method from one parameter of the distribution to 
another and therefore this study aims at estimating 
the scale parameter of the NWWD using Bayesian 
approach and making a comparison between the 
Bayesian approach and the method of maximum 
likelihood estimation.  

The aim of this article is to estimate the scale 
parameter of the NWWD using Bayesian approach 
assuming a Jeffrey’s prior distribution with a 
quadratic loss function. Next to this introductory 
section is the remaining part of this paper presented 
as follows: in Section 2, maximum likelihood 
estimator (MLE) for the scale parameter is obtained. 
In Section 3, Bayesian estimators based on the 
quadratic loss function by assuming a Jeffrey’s prior 
distribution is derived. The proposed estimators are 
compared using their mean squared error (MSE) in 

Section 4. Finally, the conclusion is made in Section 
5. 
 

II. RESEARCH METHODOLOGY 

1. Maximum Likelihood Estimation 

Let 1 2, ,...., nX X X  be a random sample from a 

population X of size ‘n’ independently and identically 
distributed random variables with probability density 
function ( ),f x . The likelihood is the joint 

probability function of the data, but viewed as a 
function of the parameters, treating the observed data 
as fixed quantities. Given that the values, 

 1 2, ,..., nx x x x  are obtained independently 

from the NWWD with unknown parameters,  ,   
and  .  

The likelihood function is given by: 
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The likelihood function,
 

 | , ,L x     based on 

the pdf of NWWD is defined to be the joint density 

of the random variables 1 2, ,......, nx x x  and it is 

given as: 
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 For the scale parameter of the NWWD,  , the 

likelihood function is given by; 
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which is independent of the scale parameter,  . 

Let the log-likelihood function,
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Differentiating 𝒍 partially with respect to α gives; 
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And solving for ̂  gives; 
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  where ̂  is the maximum likelihood estimator of the 
scale parameter,  . Details concerning the maximum 
likelihood estimators of the scale parameter of the 
NWWD can be found in [15]. 

 
2. Bayesian Estimation 

The Bayesian inference requires an appropriate 
choice of prior(s) for the parameter(s). From the 
Bayesian viewpoint, there is no clear-cut way from 
which one can conclude that one prior is better than 
the other. Nevertheless, very often priors are chosen 
according to one’s subjective knowledge and beliefs. 
However, if one has adequate information about the 
parameter(s), it is better to choose informative 
prior(s); otherwise, it is preferable to use non-
informative prior(s). 

In this study, a non-informative prior (Jeffrey) 
will be considered for estimating the scale parameter 
of the NWWD. This assumed prior distribution has 
been used widely by several authors including [19]-
[27]. This study also considers the quadratic loss 
function which has also been used previously by 
some researchers such as [28]-[38] etc.  
The posterior distribution of a parameter is the 
distribution of the parameter after observing the 
available data and it is obtained by using Bayes’ 
theorem in relation to the scale parameter  , 

likelihood function and prior distribution as follows:  
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where  P x  is the marginal distribution of X and 
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when the prior 

distribution of   is discrete and 
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


   when the prior 

distribution of   is continuous. Also, note that 

 p   and ( | )L x   are the prior distribution and 

the Likelihood function respectively.  
 
2.1 Bayesian Estimation under Jeffrey’s Prior with 

Quadratic Loss Functions 
The posterior distribution of the scale parameter   
for a given data assuming Jeffrey’s prior distribution 
is obtained from (3.1) using integration by 
substitution method as follows: 

The Jeffrey’s prior as a non-informative prior 
relating to the scale parameter  of the NWWD is 
defined as: 
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(3.2) 
The posterior distribution of the scale parameter   
for a given data using Jeffrey’s prior is defined as: 
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Now, let 

                  |K L x P d                  (3.4) 

Substituting for  P   and  |L x  ; we have: 
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Also, using integration by substitution method in 
equation (3.5); we obtain the following: 
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Substituting for  and d  in equation (3.5) and 
simplifying; we have: 
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Also recall that  1
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Substituting for K ,  P   and  |L x   in 

equation (3.3) and simplifying; we obtain the 
posterior distribution under Jeffrey’s prior as follows: 
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(3.8) 
The derivation of Bayes estimator using QLF under 
Jeffrey’s prior is obtained as: 
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Now recall that for Jeffrey’s prior, 
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Substituting for  |P x  in equation (3.9); we 

have: 
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Using integration by substitution in equation (3.10); 
we obtain the following: 
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Substituting for  and d  in equation (3.10) and 
simplifying; we have:  
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(3.11) 
Similarly; 
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Now recall that for Jeffrey’s prior, 
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Substituting for  |P x  in equation (3.12); we 

have: 
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Using integration by substitution in equation (3.13); 
we obtain the following: 
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Substituting for  and d  in equation (3.13) and 
simplifying; we have: 
                             

 
 
  

2

12

1

|
1 2

n

i
i

x

E x
n n

 
 

 
 

 
 


                      

(3.14) 
But recall that 
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III. RESULTS AND DISCUSSION 

A. Results 
 
In this section, Monte Carlo simulation with R 
software under 10,000 replications is considered to 
generate random samples of sizes n = (25, 50, 75, 
100, 125, 150) from the NWWD using the quantile 
function (inverse transformation method of 
simulation) under the following combination of 
parameter values: 0.5, 0.5, 0.5     , 

0.5, 1.5, 0.5     , 

1.5, 0.5, 0.5      and 

0.5, 0.5, 1.5     . The following table 

presents the results of a simulation study by listing 
the average estimates of the scale parameter with 
their respective Mean Square Errors (MSEs) under 
the appropriate estimation methods which include the 
Maximum Likelihood Estimation (MLE) and 
Quadratic Loss Function (QLF) under Jeffrey prior 
respectively. The criterion for evaluating the 
performance of the estimators in this study is the 

Mean Square Error (MSE):  21 ˆ .
n

MSE E     
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Table 4.1: Estimates and Mean Squared Errors (within parenthesis) for ̂  under Jeffrey’s prior. MLE=Maximum 
likelihood estimator, QLF= Quadratic loss function. 

 

Size 
(n) 

Parameter 
(True values) 

Methods of Estimation
 

      ˆMLE
 

ˆ
QLF

 
25 0.5 0.5 0.5 0.5204 (0.0123) 0.4788 (0.0105) 

0.5 1.5 0.5 1.5613 (0.1106) 1.4364 (0.0945) 
1.5 0.5 0.5 1.5613 (0.1106) 1.4364 (0.0945) 
0.5 0.5 1.5 0.5204 (0.0123) 0.4788 (0.0105) 

50 0.5 0.5 0.5 0.5095 (0.0054) 0.4891 (0.0050) 
0.5 1.5 0.5 1.5286 (0.0489) 1.4674 (0.0454) 
1.5 0.5 0.5 1.5286 (0.0489) 1.4674 (0.0454) 
0.5 0.5 1.5 0.5095 (0.0054) 0.4891 (0.0050) 

75 0.5 0.5 0.5 0.5073 (0.0036) 0.4938 (0.0034) 
0.5 1.5 0.5 1.5219 (0.0326) 1.4813 (0.0308) 
1.5 0.5 0.5 1.5219 (0.0326) 1.4813 (0.0308) 
0.5 0.5 1.5 0.5073 (0.0036) 0.4938 (0.0034) 

100 0.5 0.5 0.5 0.5053 (0.0027) 0.4952 (0.0026) 
0.5 1.5 0.5 1.5158 (0.0240) 1.4855 (0.0230) 
1.5 0.5 0.5 1.5158 (0.0240) 1.4855 (0.0230) 
0.5 0.5 1.5 0.5053 (0.0027) 0.4952 (0.0026) 

125 0.5 0.5 0.5 0.5046 (0.0021) 0.4965 (0.0020) 
0.5 1.5 0.5 1.5137 (0.0189) 1.4895 (0.0183) 
1.5 0.5 0.5 1.5137 (0.0189) 1.4895 (0.0183) 
0.5 0.5 1.5 0.5046 (0.0021) 0.4965 (0.0020) 

150 0.5 0.5 0.5 0.5035 (0.0017) 0.4968 (0.0017) 
0.5 1.5 0.5 1.5104 (0.0153) 1.4903 (0.0149) 
1.5 0.5 0.5 1.5104 (0.0153) 1.4903 (0.0149) 
0.5 0.5 1.5 0.5035 (0.0017) 0.4968 (0.0017) 

 
Looking at the results from Table 4.1, one can see 

that the estimators of the scale parameter using QLF under 
Jeffrey prior is better than the MLEs based on the fact that 
it has the lowest MSE despite the changes in the samples 
and chosen parameter values. This consistency in the result 
for Bayesian estimators (using QLF under Jeffrey prior) is 
proof that the approach is more efficient for estimating the 
scale parameter compared to MLE.   

Generally, the results in Table 4.1 have proven that 
the average estimates of the scale parameter get closer to 
the true parameter value when sample size increases, and 
the mean square errors (MSEs) all decrease as sample size 
increases which satisfies the first-order asymptotic theory. 
Similarly, Bayesian estimators and maximum likelihood 
estimators (MLEs) all become better when the sample size 

increases. In fact, for very large sample sizes the 
performances of these estimators are observed to be 
relatively the same for both methods of estimation. 

IV. CONCLUSION 

This paper has derived Bayesian estimators for the scale 
parameter of NWWD by assuming a Jeffrey prior 
distribution with the Quadratic Loss Function. Posterior 
distribution and Bayes estimators of this parameter are 
derived using the above prior and loss function. The 
efficiency of these estimators has been evaluated by means 
of their mean square errors using the inverse 
transformation method of Monte Carlo Simulations with 
different parameter values and sample sizes.  

The results of the simulation and comparison show 
that using the quadratic loss function gives estimators with 
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the lowest MSEs. Precisely, it is found that the Bayesian 
Method using Quadratic Loss Function under Jeffrey prior 
produces the best estimator of the scale parameter 
compared to the estimator of the Maximum Likelihood 
method irrespective of the chosen parameters values and 
the allocated sample sizes.  

This research also found that the variation in the values of 
the shape parameters of the distribution does not affect or 
change the performance of the estimators of the estimated 
scale parameter, however, it is recommended that since this 
study considers only the scale parameter of the 
distribution, subsequent studies should consider any of the 
shape parameters of the distribution due to the fact that in 
statistical applications of this model it will be very 
important to identify and understand the best method for 
estimating both the scale and shape parameters of the 
model. 
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