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Abstract— This paper compares the powers of Glejser, Park 
and White tests in detecting heteroscedasticity in two non-
linear models: Constant Elasticity of Substitution (CES) and 
Exponential production function. Exponential production 
function was transformed to an intrinsically linear model 
through the natural logarithms while CES production function 
model was transformed using Kmenta (1967) linearization 
approach. The sample sizes for the simulation were grouped 
into three categories: 10 and 30, 50 and 100, 150 and 200 for 
small, medium and large sample sizes respectively with 10,000 
replications. The levels of heteroscedasticity introduced were 
0.1, 0.5 and 0.9 for mild, moderate and severe 
heteroscedasticity respectively. The level of significance used 
was 0.05. Results showed that at all levels of heteroscedasticity 
for the models considered in this paper, Glejser test is the most 
powerful test for all the sample sizes. 

Keywords: Heteroscedasticity, Intrinsically linear model, 
Production function, Power of the test. 

I. Introduction 

It is known that when the assumptions of the classical linear 
regression model (CLRM) are valid, ordinary least squares 
(OLS) provides efficient and unbiased estimates of 
parameters. One of the assumptions of CLRM is that the 
disturbances ui in the population regression function (PRF) 
are homoscedastic; that is, they all have the same variance, 
σ2. If the variance of ui is σi

2, � = 1, … , �, it indicates that it 
varies from observation to observation, then there exists 
heteroscedasticity, or unequal, or non-constant variance. If 
the errors are heteroscedastic, the OLS estimator remains 
unbiased but becomes inefficient [1,2]. 

Generally, non-linear models are used in the estimation 
of production and demand functions. Even a simple Cobb-

Douglass production function cannot be transformed into 
linearity if the error term is added rather than multiplied [3].  
Econometric modeling demands the incorporation of 
stochastic term (an error term) as well as the specification of 
its distribution. Violation of homoscedasticity, one of the 
assumptions of classical linear regression models, leads to 
bias in estimating regression parameters. Hence, there is 
need to test for the presence of heteroscedasticity in datasets 
before modeling.  

Examination of the asymptotic behavior of the power of 
heteroscedasticity tests in two non-linear models for small 
to large sample sizes will be investigated.[4] Koichi, in his 
paper comparing the Wald, LR and LM tests for 
heteroscedasticity in a linear regression model, compare the 
power of the Wald, Likelihood ratio and Lagrangian 
multiplier model through the asymptotic expansion of the 
non-null distribution for the three tests, as a result, he 
discovered that the powers of the three tests depend on both 
the nature of the explanatory variables and the direction of 
the alternative hypothesis and that no one statistic is 
uniformly superior to the others. [5] in their study titled “ 
estimation parameters of linear econometric model and the 
power of test in the presence of heteroscedasticity”, where 
they introduced two functional forms of heteroscedasticity 
into the econometric model, the results showed that Glejser 
test is more powerful in detecting the presence of 
heteroscedasticity than Breusch-Pagan and White tests. 

Two tests for homoscedasticity that requires little 
knowledge of the functional relationship for determining the 
variance of the error term was proposed by [6]. The idea of 
the first test is to approximate the true relationship by 
Tailor’s series expansion, which is essentially linearizing 
the function in a neighbourhood. 
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II. RESEARCH METHODOLOGY 

A. Methodology 

In this study we consider the classical regression model 
which is specified by 
Y X u                                                                  2.1 

Where, 
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with the following assumptions 

i. X  is a non-stochastic matrix of rank k n and as the 
sample size n  becomes infinitely large, 

 lim /X X n Q
n

 


                                          

2.2 
where Q is a finite and nonsingular matrix 

ii. The vector u consists of unobservable random errors 
which satisfy the properties 

  0E u                                                             

2.3 

  2
E uu I                                                     

2.4 
  The conditional mean of Y given X  

 /E Y X X                                                  

2.5 

Since by assumption   0E u  . That is, the expected 

values of the variables Y is a linear functions of the 

explanatory variables , , ,1 2X X X k . 

Also, assumption (i) excludes the possibility of 
“exact” multicollinearity among the regressors 
because of the rank assumption on X . No column of 
X can be represented as a linear combination of the 

remaining columns of X . 
Assumption (ii) specifies the probability distribution 
of the error terms. They are independent and 

identically distributed with zero mean and variance 
2

 . 
The models used  

1. The Constant Elasticity of Substitution Production 
Function with multiplicative error term can be 
represented as 

 
1
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2.6 

where Y is a vector of dependent variables, 1 is the 

intercept , 2 and 3 are the regression coefficients, K and 

L are the capital and labour respectively and u is the error 
term. 
By taking the natural logarithms of both sides of (2.6), we 
have
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                                                                                            2.7         
since taking logarithms will not make the nonlinear function 
linear in the parameters. 

The CES production function can be linearized using 
Kmenta [12] linearization approach. However, a linear 

Taylor Series expansion around 03  produced an 

intrinsically linear model. We have, 

 ln ln( ) ln( ) (1 ) ln( )1 2 2Y K L       

   
1 2

1 ln ln3 2 2 2
K L u      

 
  

             2.8 

2. The Exponential Production Function with 
multiplicative error term can be expressed as 
 

32
1

LK
Y e e u


                            2.9 

where 

Yi is a vector of dependent variables, 1 is the intercept , 2

and 3 are the regression coefficients, K and L are the 

capital and labour respectively and ui is the error term. 

By taking the natural logarithms of both sides of (2.9), we 
have

 

                    
   ln ln ln1 2 3Y K L u                2.10 
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B. Error Variance Structures and Tests for 
Heteroscedasticity 

We considered the multiplicative heteroscedasticity error 
structure model discussed by Harvey [11]. This is given as 
follows: 

Y X ui i i   

with, 
 

 
22 2

E Yi i   

 
22

1 1X Xi k ik      

 2
exp ,qi                                 2.11 

 2
Zi


  

where 
2

  and  are both unknown real constants, which 
determines the degree of  heteroscedasticity.  
The three tests that were considered in this paper are White 
(1980), Glejser (1969) and Park (1966). 
 

III. ANALYSIS 

A sample infected with heteroscedasticity using uniform 
distribution to generate data for Capital (K), Labour (L) and 

Output (Y). The study used an arbitrary initial values for 1

= 0.2, 2 = 0.5 and 3 = 0.3 for the models. 

The set of parameter estimates obtained were used to 
compute the residuals which represented the dependent 
variable for the auxiliary regression. The errors were drawn 

from a normal distribution with mean zero and variance
2

 . 
The sample sizes for the simulation were grouped into three 
categories: 10 & 30; 50 & 100; and 150 & 200 for small, 
medium and large sample sizes respectively. Each model 
fitted was replicated 10,000 times. 
The degrees of heteroscedasticity,  , introduced were 0.1, 
0.5 and 0.9 for mild, moderate and severe heteroscedasticity 
respectively. 
. 
 
 
 
 
 
 
 
 
 

IV. RESULTS 

 
TABLE 1: Power of the Tests for CES model 0.05   
 

 
TABLE 2: Power of theTests for Exponential model

0.05   

TEST   SAMPLE SIZE 
10 30 50 100 150 200 

WHITE 0.1 0.1674 0.3932 0.6077 0.3473 0.5778 0.6377 
GLEJSER  0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

PARK  - 0.8742 0.9516 0.9999 1.0000 1.0000 
        

WHITE 0.5 0.1892 0.8245 0.4745 0.7264 0.9546 0.4304 
GLEJSER  0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

PARK  - 0.0603 0.3044 0.9860 1.0000 1.0000 
        

WHITE 0.9 0.4101 0.9373 0.0250 0.1936 0.6450 0.0000 
GLEJSER  0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 

PARK  - 0.7296 0.8858 0.9999 1.0000 1.0000 

.   

V. DISCUSSIONS 

Table 1 shows the power of the tests for CES Model at 
0.05  . The result shows that at every level of 

heteroscedasticity, as the sample size increases, the power 
of the test for Glejser remains high. The power of the Park 
test also improves from small to large sample sizes while 
White test has very low power to detect the presence of 
heteroscedasticity at every level. 

Table 2 shows the power of the tests for Exponential 
Model at 0.05  . There is no results when the sample is 
10 at every level of heteroscedasticity due to insufficient 
sample size for Park test but the power improves as the 
sample size increases. The power of Glejser test is high 
from small to large sample sizes at every level of 
heteroscedasticity.  

VI. CONCLUSION 

In this study, we compared the powers of the three tests in 
detecting the presence of heteroscedasticity in two nonlinear 
production function models. In view of the analysis, the 

TEST   SAMPLE SIZE 
10 30 50 100 1 200 

WHITE 0.1 0.2231 0.2873 0.0726 0.5204 0.2255 0.0797 
GLEJSER  - 0.9133 0.9989 1.0000 1.0000 1.0000 

PARK  - 0.1888 0.5755 0.9999 0.9999 1.0000 
        

WHITE 0.5 0.2231 0.2873 0.3227 0.5206 0.3492 0.0000 
GLEJSER  1.0000 0.8851 0.9999 1.0000 1.0000 1.0000 

PARK  - 0.1856 0.8898 0.9999 1.0000 1.0000 
        

WHITE 0.9 0.2231 0.2873 0.3234 0.5208 0.3492 0.0000 
GLEJSER  - 0.8822 0.9999 1.0000 1.0000 1.0000 

PARK  - 0.5123 0.8896 0.9999 1.0000 1.0000 
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results show that Glejser test detects heteroscedasticity more 
efficiently in all sample sizes and at all levels of 
heteroscedasticity for the two models. The power of the 
Park testalso improves from small to large sample size at 
every level of heteroscedasticity for the two models. 
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