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Abstract—Most high frequency series collected by statistical 
agencies are either monthly or quarterly, and may be subject 
to survey error. Annual values, otherwise known as 
benchmarks, on the other hand are more reliable, therefore 
there is need for adjustment, correction and reconciliation by 
statistical agencies in order to arrive at consistent values. 
Benchmarking is the process of adjusting the quarterly series 
to be consistent with the annual values. In this paper, various 
reconciliation procedures comprising Denton’s  additive level 
difference (ALD), additive first difference (AFD), and 
proportional first difference (PFD) were employed in order to 
rid of the discrepancies often noticed between quarterly and 
annual data values. Using economic data from IMF (2015), the 
results obtained are tested using some descriptive statistics, 
charts, and Benchmarking-to-Indicator (BI) ratios. It was 
discovered that PFD technique of reconciliation in solving 
benchmarking problem is better. 

Keywords: Reconciliation, Benchmarking, Additive 
methods, Proportional methods, BI ratio 

I. Introduction  

Benchmarking deals with the problem of combining a series 
of high-frequency data (e.g., quarterly data) with a series of 
less frequent data (e.g., annual data) for a certain variable 
into a consistent time series. The problem arises when the 
two series show different levels and movements and need to 
be made temporally consistent. Because low-frequency data 
are usually more comprehensive and accurate than high-
frequency ones; the high frequency series is benchmarked to 

the low-frequency data. A common problem faced by 
official statistical agencies is the adjustment of monthly or 
quarterly time series which have been obtained from sample 
surveys to make them consistent with more accurate values 
obtained from other sources. These values can be aggregates 
or individual values at arbitrary points along the series 
(Durbin and Quenneville, 1997). The sources can be 
censuses, more accurate sample surveys, administrative data 
or combination of these. This adjustment process is called 
benchmarking and the more accurate values are called 
benchmarks. Typically, benchmarks are either yearly totals 
or values observed at a particular time-point each year. For 
simplicity, we assume that the data are monthly and the 
benchmarks are annual, though the broader interpretation 
should be borne in mind. In time series literatures, this 
problem, involving either one or many time series, is 
generally known as temporal disaggregation (Ajao et al., 
2015; Friedman, 1962; Chow and Lin, 1971; 
Ginsburgh,1973; Bournay and Laroque, 1979; Fernandez, 
1981; Rossi, 1982; Litterman,1983; Al-Osh, 1989; Di 
Fonzo, 1990, 2002, 2003; Guerrero, 1990, 2003, 2005; Wei 
and Stram, 1990; Guerrero and Martinez, 1995; Salazar, 
Smith, and Weale, 2004; Proietti, 1998, 2005; Cabrer and 
Pavia, 1999; Guerrero and Nieto, 1999; Harvey and Chung, 
2000; Hodgess and Wei, 2000; Santos Silva and Cardoso, 
2001; Casals, Jerez, and Sotoca, 2005; Mitchell, Smith, 
Weale, Wright,and Salazar, 2005) or benchmarking of time 
series (Denton, 1971; Helfand, Monsour, and Trager, 1977; 
Cholette, 1984, 1987, 1988; Bozik and Otto, 1988; Hillmer 
and Trabelsi, 1987; Taillon, 1988; Laniel and Fyfe, 1989; 
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Trabelsi and Hillmer, 1990; Chen, Cholette, and Dagum, 
1997; Chen and Dagum, 1997; Durbin and Quenneville, 
1997; Dagum, Cholette, and Chen, 1998; Di Fonzo and 
Marini, 2005; Quenneville and Rancourt, 2005), where the 
latter definition (benchmarking) naturally matches with the 
philosophy of the data reconciliation procedures. 
 

II. RESEARCH METHODOLOGY 

1.1 Formulation of the Problem and a General 
Approach to its solution 
Assume that we are concerned with the intra-annual time 
periods of which there are k per year, k being an integer. Let 
the time series of interest cover m years and consist of

n mk values. The original values are represented in 

column-vector form by  
'

1 2  . . . ns s s s . Assume also 

we have, from a different source, a set of m annual totals 

represented by  '21  . . .  naaaa  . The problem is to adjust 

the original vector z to obtain a new vector 

 '21  . . .  n  by a method which (a) minimizes the 

distortion of the original series, in some sense, and (b) 
satisfies the condition that the k values of the new series 
within each year sum to the given annual total for that year. 

More formally, we specify a penalty function,  ,,sp  and 

express the problem as that of choosing   so as to 

minimize  ,,sp  subject to: 

 

 





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  (for T=1,2,...,m)  … (1) 

 
Consider the class of penalty functions represented by 

   , 
'

sAs    a quadratic form in the differences 

between the original and adjusted time-series values, A 
being a symmetric (n × n) non-singular matrix to be 
specified later. We set up a Lagrangian expression and 
write: 
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j being a k-dimensional column vector in which each 
element is unity and 0 being a k- dimensional null column 
vector. B is n X m. The penalty minimizing solution is 
obtained by taking partial derivatives of u with respect to 

the elements: x and , and then equating the resultant to 

zero, and solving for x and . For convenience, we write  

 'Bar   for the vector of discrepancies between the 

two sets of annual totals and express the solution in the 
form: 
 
 

' '

0

0

x A B A z

B B I r

       
         
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 …(4) 

 
Where I is the (m×m) identity matrix and 0 is the (m×m) 
null matrix. (It is assumed, of course, that the second-order 
conditions necessary for the solution to be a minimum are 
satisfied.) Using a well-known result for deriving the 

inverse of a partitioned matrix, the solution for  is then 

found to be ,Crs  where   111 '
 BABBAC . 

Thus the adjusted values are equal to the original values 
plus linear combinations of the discrepancies between the 
two sets of annual totals. 
 
2.2 The Original and Modified Additive First Difference 
Variants of the Denton Method 
The underlying model of the Denton benchmarking method 
is the following: 
 

ttt es       …(5) 
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Where ts  and t are respectively the observed sub-annual 

series and the benchmarked series. The behaviour of the 
error is specified by an objective function. The objective 
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function of the original additive first difference Denton 
method is: 
 

      
2

2
11

2

11min 

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T

t
tttt sss   …(7) 
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Denton imposes the constraint  00 s . This Denton 

initial condition forces the benchmarked series to equal the 
original series at time zero and results in the minimization 

of the first correction  11 s . Without the Denton initial 

condition (first term), eqn. (8) specifies that the difference 

between the benchmarked and the original series  tt s  

must be as constant as possible through time. The modified 
first difference variant precisely omits this first term to solve 
the short-coming in the original model.  
 
In both the original and modified variants, an objective 
function is minimized subject to the benchmarking 
constraints (6). The objective function can be written in 
matrix algebra as: 
 

        JasDDsf  '''
2,  …(9) 

 

 JDsDsDsDDD '''''' 22'   ...(10) 
 

Where a stands for the benchmarks, s and   respectively 
denote the observed original series and benchmarked series, 
and   contains the Lagrange multipliers associated with 

the linear constraints  0 Ja .  Matrix J is the 
temporal sum operator.  
 
The necessary conditions for optimization require that the 
derivative of the objective function (10) with respect to the 
parameters be equal to zero: 
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The sufficient condition for a minimum is that the matrix of 

the second order derivatives  
  

2

,







 f
 be positive 

definite. Matrix DDA '  is indeed positive definite 

because it is of the form BBA '  
 

DsDJDD '''       …(13) 
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Where ais replaced by )( JsaJs   which provides a 

more convenient result. Eqn. (14) may be expressed as: 
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Eqn. (15) re-arranged we have 
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The inversion by parts in (16) leads to the following 
alternative 
 

      JsaJDDJJDDs 
 1

'1''1'̂   ... (17) 

 
2.3 The Benchmark-to-indicator (BI) ratio framework 
This is for converting individual indicator series into 
estimates of individual quarterly variables. To understand 
the relationship and reconciliation between the 
corresponding annual and quarterly data, it is useful to 
observe the ratio of the annual benchmark to the sum of the 
four quarters of the indicator (the annual BI ratio). 
Movements in the observed annual BI ratio show 
inconsistencies between the long-term movements in the 
indicator and in the annual data. The relationship between 
the annual data and the quarterly indicator can be assessed 
by looking at the movements of the annual BI ratio, namely 
the ratio of the annual benchmark to the sum of the four 
quarters of the indicator. The annual BI ratio can be 
expressed as: 
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where  
Anis the annual target variable for year n 




n

nt
tI

4

34

is the annual sum of the quarterly observations of 

the indicator I for the same year  n,  
y is the last available year 
 
When the BI ratio changes over time, it signals different 
patterns between the indicator and the annual data; instead, 
a constant annual BI ratio mean that the two variables 
present the same rates of change. As a result, movements in 
the annual BI ratio can help identify the quality of the 
indicator series in tracking the movements of the annual 
variables over the years. 
 

III. ANALYSIS AND RESULTS 

Table 1:Annual Import data 

Year Annual data 

2009 944 

2010 957 

2011 980 

2012 1031 

2013 1088 

2014 1136 

2015 1127 
Source: IMF, 2015 

 

Table 2: Quarterly data 

Quarters Indicators Quarters Indicators 

2009Q1 77.09 2013Q1 86.71 

2009Q2 86.16 2013Q2 96.76 

2009Q3 82.02 2013Q3 95.27 

2009Q4 88.72 2013Q4 103.22 

2010Q1 75.86 2014Q1 93.12 

2010Q2 87.4 2014Q2 101.63 

2010Q3 84.41 2014Q3 98.54 

2010Q4 89.77 2014Q4 106.71 

2011Q1 76.79 2015Q1 94.35 

2011Q2 88.89 2015Q2 101.74 

2011Q3 85.49 2015Q3 97.4 

2011Q4 92.86 2015Q4 104.2 

2012Q1 82.78 

2012Q2 91.35 

2012Q3 89.98 

2012Q4 96.8     

Source: IMF, 2015 

 

By implementing equation (17)  
 

      JsaJDDJJDDs 
 1

'1''1'̂
 

 
Using MATLAB 7.10, the following results are obtained 
and summarized in table 3 

 
Table 3: Assessment of the Discrepancies using the BI ratios 

  ALD AFD PFD 

Mean 2.8475 2.8467 2.8414 

Median 2.8344 2.8304 2.8408 

Maximum 3.0703 3.0416 2.8574 

Minimum 2.71 2.7256 2.8247 

Std. Dev. 0.1095 0.0972 0.0101 

Standard 
Error 

0.0207 0.0184 0.0019 

Skewness 0.6325 0.5791 0.0619 

Kurtosis -0.622 -0.8212 -1.0962 

Range 0.3603 0.316 0.0327 

 
The result of the descriptive statistics of the BI ratios in 
table 6 shows that the PFD has the least values in Standard 
deviation, standard error, skewness, and range. The standard 
deviations and standard errors for PFD BI ratios are 0.0101 
and 0.0019 respectively, lower than values from ALD and 
AFD, this means the estimated benchmarks obtained 
through PFD is more stable than the other two methods. 
These tell us that PFD method of benchmarking performs 
better than ALD and AFD in term stability of the obtained 
data. 
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Fig. 1: The indicator and the estimated Benchmarked series 
using ALD method 
 

Fig. 2: The Indicator and the estimated Benchmarked series 
using AFD method 
 
The two graphs (Figs. 1 and 2) show that there are some 
inconsistencies in the between the indicator and the 
benchmarked series produced by the ALD and AFD 
methods. It seems to be higher in the series obtained using 
the ALD method. 
 

 
Fig. 3: The Indicator and the estimated Benchmarked series 
using PFD method 

From Fig. 3, PFD method seems to be better with the level 
of consistency observed between the indicator and the 
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Fig. 1: The indicator and the estimated Benchmarked series 

Fig. 2: The Indicator and the estimated Benchmarked series 

. 1 and 2) show that there are some 
inconsistencies in the between the indicator and the 
benchmarked series produced by the ALD and AFD 
methods. It seems to be higher in the series obtained using 

 

Indicator and the estimated Benchmarked series 

, PFD method seems to be better with the level 
of consistency observed between the indicator and the 

benchmarked series obtained both at the backward and 
forward series 

 

Fig. 4: Benchmark-to-Indicator ratio for three methods 

 
There is step problem (as fig.4 reveals) in the ALD and 
AFD methods, but PFD method smoothens the series, and 
inconsistence noticed in the series is reduced.

IV. DISCUSSIONS

From the tables and graphs above, it can be noticed that the 
discrepancies are obvious between the indicator and 
benchmarked series in ALD and AFD methods, the methods 
cannot reconcile the indicator with the benchmarked 
effectively. On the other hand, the PFD method gives a better 
result, in the sense that the benchmarked series derived by 
the method is more consistent that the first two methods.  It 
can be noticed that the PFD method outperforms the other 
methods by its low values in standard error, standard 
deviation, range, and skewness (Table
(Figs. 3 and 4)show more stability and less inconsistency for 
benchmarked series produced by PFD methods.  

V. CONCLUSION 

It can be concluded that the Denton Proportion First 
Difference (PFD) method reconciles better the move
in the indicator series. It is therefore recommended that 
users of economic data with benchmarking problem should 
employ the use of the Denton PFD. Further research can be 
carried out investigations into using various auto correlation 
coefficients to control the inconsistencies introduced by 
errors. 
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There is step problem (as fig.4 reveals) in the ALD and 
AFD methods, but PFD method smoothens the series, and 
inconsistence noticed in the series is reduced. 
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