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Abstract—This paper presents an empirical study of modelling 
and forecasting time series data of the official Exchange rate of 
Nigeria. The Box-Jenkins ARIMA methodology was used for 
forecasting the yearly data collected from 1972 to 2017. Result 
of the analysis revealed that the series became stationary at first 
difference. The diagnostic checking has shown that ARIMA (0, 
1, 0) is appropriate or optimal model based on the Log-
likelihood (LogLik), Akaike’s Information Criterion 
(AIC),andthe Bayesian Information Criterion (BIC). The 
performance of auto.arima function in R gives the best 
model for exchange of dollar to Naira without the rigours of 
testing for other ARIMA models. With Minimum Mean Error 
(ME), Mean Percentage Error (MPE), and Root Mean Squared 
Error (RMSE), which proves that ARIMA (0, 1, 0) model is the 
best or optimal model for the period forecasted at 5% level of 
significance. The upward movement in the forecasts of the 
exchange rate would be helpful for policy makers in Nigeria. 

Keywords--ARIMA, exchange rate, Optimal model, 
selection criteria. 

I. INTRODUCTION 

Most researchers have done a great research on forecasting 
of exchange rate for developed and developing countries 
using different approaches. The approach might vary in 
either fundamental or technical approach. Like the work of 
Harrison (1998), used a technical approach to forecast 
Nigeria naira – US dollar using seasonal ARIMA model 
for the period of 2004 to 2011. He reveals that the series 
(exchange rate) has a negative trend between 2004 and 
2007 and was stable in 2008. Newaz (2008) made a 
comparison on the performance of time series models for 
forecasting exchange rate for the period of 1985 – 2006. 
He compared ARIMA model, NAÏVE 1, NAÏVE 2 and 
exponential smoothing techniques to see which one fits the 
forecasts of exchange rate. He reveals that ARIMA model 
provides a better forecasting of exchange rate than either of 
the other techniques; selection was based on MAE (mean 
absolute error), MAPE (mean absolute percentage error), 
MSE (mean square error), and RMSE (root mean square 
error).  

Further work, Shittu and Olaoluwa (2008) try to 
measure the forecast performance of ARMA and ARFIMA 
model on the application to US/UK pounds foreign 
exchange. They reveal that ARFIMA model was found to 
be better than ARMA model as indicates by the 
measurement criteria. Their persistent result reveals that 
ARFIMA model is more realistic and closely reflects the 
current economic reality in the two countries which was 
indicated by their forecasting evaluation tool. They found 
out that their result was in conformance with the work of 
Kwiatkowski et al (1992).  

Shittu (2008) used an intervention analysis to model 
Nigeria exchange rate in the presence of financial and 
political instability from the period (1970­2004). He 
explains that modeling of such series using the technique 
was misleading and forecast from such model will be 
unrealistic, he continued in his findings that the 
intervention are pulse function with gradual and linear but 
significant impact in the naira – dollar exchange rates. 

 Appiah and Adetunde (2011) conducted a research on 
forecasting exchange rate between the Ghana cedi’s and 
the US dollar using time series analysis for the period 
January 1994 to December 2010. Their findings reveal that 
predicted rates were consistent with the depreciating trend 
of the observed series and ARIMA (1, 1, 1) was found to 
be the best model to such series and a forecast for two 
years were made from January 2011 to December 2012 
and reveals that a depreciation of Ghana cedi’s against the 
US dollar was found. 

The literature is growing in recent times on the 
examination of the distributional properties of exchange 
rates and its links to the behavior of private domestic 
investment. Thomas, (1997) in his study of 86 developing 
countries examined data on terms of trade, real exchange 
rates, and property rights and concluded that while factors 
including credit, availability and the quality of physical 
and human infrastructure are important influences, 
uncertainty in the foreign exchange rate was negatively 
related to private investment in sub­Saharan countries. 
Employing the variability in real exchange rates as an 
explanatory variable in regression analysis, Jayaraman 
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(1996) in his cross­country study on the macroeconomic 
environment and private investment in six Pacific Island 
countries observed a statistically significant negative 
relationship between the variability in the real exchange 
rate and private investment.  

Duncan et al. (1999) commented that although 
variability in the real exchange rate is a reasonable proxy 
for instability in major economic variables as fluctuations 
in inflation and productivity and more generally in fiscal 
and monetary management are reflected in the real 
exchange rate, it is not a good measure of the uncertainty 
attached to policy or the insecurity of property rights and 
enforcement of contracts or the level of corruption. 

Observing that these non­economic factors appear to 
be very significant influences on investment in the Pacific 
Island countries, Duncan et al. 1999, however, concede 
that no quantitative or qualitative evidence is available of 
their size or their impact. In the absence of such evidence, 
any study on private investment is to be necessarily 
restricted to the conventional variables ARIMA models 
have been used for forecasting different types of time 
series and have been compared with a benchmark model 
for its validity. Therefore, to capture the long term trend, 
many authors had used Auto regressive Integrated Moving 
Average (ARIMA) model as proposed by Box­Jenkins 
(1976), to forecast the exchange rate. The essence of this 
approach was that the data were used for identifying the 
estimation of the random components in the form of 
moving average and autoregressive process. It did not 
identify and measure the structural relationship as was 
attempted when forecasting with econometric models. 
They used exponential smoothing to forecast yields in 
United States and Canada. They also compared the 
forecasting accuracy between parametric modeling and 
exponential smoothing.  

Yinusa (2008) investigated the relationship between 
nominal exchange rate volatility and dollarization in 
Nigeria by applying Granger causality test for the period 
1986–2003 using quarterly data. The study reported a bi­
causality between them but the causality from dollarization 
to exchange rate volatility appears stronger and dominates. 
He however concluded that policies that aim to reduce 
exchange rate volatility in Nigeria must include measures 
that specifically address the issue of dollarization. But, the 
exact measure of exchange rate volatility in the study was 
not reported. 

In the same vein, Ogunleye (2009) investigated the 
relationship between exchange rate volatility and Foreign 
Direct Investments (FDI) inflows in Sub­ Saharan Africa 
using Nigeria and South Africa as case studies. By 
endogeneizing exchange rate volatility, the study uses a 
two – stage Least Squares methodology. The study finds 
that in Nigeria, there is a statistically significant 

relationship between the variables, with exchange rate 
volatility retarding FDI inflows and FDI inflows increasing 
exchange rate volatility. As revealed by the study, this 
relationship is however weak for South Africa. The 
possible reason adduced by the study is the sound capital 
flow management policy of the South African Reserve 
Bank. 

Further attempts were made by Aliyu (2009) and 
employed standard deviation measure of exchange rate 
volatility based quarterly observation and further assesses 
the impact of exchange rate volatility on non­oil export 
flows in Nigeria between 1986 and 2006. Empirical result 
revealed that exchange rate volatility decreased non­oil 
exports in Nigeria.  

In another study, Aliyu (2009) examined the impact of 
oil price shock and exchange rate volatility on economic 
growth in Nigeria and measuring exchange rate volatility 
as the consumer price index based real exchange rate 
approach. But he failed to examine the degree and 
persistency of exchange rate volatility using standardized 
econometric. However, among the entire studies on the 
macroeconomic effects of exchange rate volatility in 
Nigeria over the past three decades, it is only the study of 
Olowe (2009) that is found to investigate the volatility of 
Naira/Dollar exchange rates in Nigeria using several 
variants of Generalized Autoregressive Conditional 
Heteroskedasticity (GARCH) models. He used monthly 
data over the period January 1970 to December 2007 and 
found that all the GARCH family models indicated that 
volatility is persistent and reported similar evidence for the 
fixed exchange rate and managed float rate regimes.  

This study employs the use of ARIMA models to 
obtain the best model for predicting the Dollar­Naira 
exchange rate, and specifically employed the auto.arima 
function in R in order to determine the optimal model 
without going through the conventional process. The data 
analysed in this paper are the annual time series data on 
Dollar­Naira exchange rate for a period of 46 years (1972 ­ 
2017) from the Bulletin of Central Bank of Nigeria (CBN) 
and R version 3.2.5 was used for the analysis. 

II. MATERIALS AND METHODS 

A. Tests for stationarity 

There are several tests of stationarity but this paper will 
discuss four major tests: Graphical analysis, the 
Autocorrelation function and Partial autocorrelation 
function, and Unit root test using Dickey­Fuller test 
The autocorrelation function as a lag k denoted by �� is 
defined as 
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where N is the sample size and �� is the sample mean. 
Therefore, the sample autocorrelation function at lag k is   

�̂� =
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which is simply the ration of sample covariance (at lag k) 
to sample variance. If the function  ��� is well­defined, its 
value must lie between ­1 and 1. The Partial 
Autocorrelation Function (PACF) is used to measure the 
correlation between an observation k period ago and the 
current observation, after controlling for observations at 
intermediate lags (i.e. at lags <k ) . At lag 1, PACF (1) is 
same as ACF (1).  

Normally, the stochastic process governing a time 
series is unknown and so it is not possible to determine the 
actual or theoretical ACF and PACF values. Rather these 
values are to be estimated from the training data, i.e. the 
known time series at hand. The estimated ACF and PACF 
values from the training data are respectively termed as 
sample ACF and PACF. The plot of ACF and PACF are 
terms correlogram. 

A test of stationary that has become extensively 
admired over the past several years is the unit root test 
Unitroot test (Dickey Fuller) Considering the unit root,  

(2)                                                1 ttt uyy    

where “e” is a white­noise error term. As if p = 1, which is 

in the unit root, the above turn into:  ttt eyy  1   i.e. a 

random walk model exclusive of drift, which is well­
known as a non­stationarystochastic process. Thus, if the 
estimates p is statistically equal to one, then �� is 
nonstationary. Mostly time series data have problem of 
unit root, so application of unit root test is valuable in time 
series data related studies .The above can be done by 
Ordinary Least Square method by manipulating the above 
equation as to obtain 

�� ����� = ����� −   ���� + �� 
 = (� − 1)���� + �� …………………………………..(3) 
This can be alternatively written as: 
  ∆��=����� + �� ……………………………………..(4) 
 
B. Time series models 

There are several models in time series analysis and they 
are as follows: 
 

i.) Autoregressive (AR) process 

The equation below is an example of an Autoregressive 
process 
       (�� − �  ) = �� (���� − �) − +�� ………………(5) 
where δ is the mean of Y and where �� is an uncorrelated 
random error term with zero mean and constant variance 
�� (i.e., it is white noise), then we say that Yt follows a 
first­order autoregressive, or AR (1),stochastic process. 
Here the value of Y at time t depends on its value in the 
previous time period and a random term; the Y values are 
expressed as deviations from their mean value. In other 
words, this model says that the forecast value of Y at time t 
is simply some proportion (=��) of its value at time (t − 1) 
plus a random shock or disturbance at time t; again the Y 
values are expressed around their mean values. But if we 
consider this model, 

  (6)        )()( 2211 tttt uYYy     

then we say that ��  follows a second­order autoregressive, 
or AR (2)process. That is, the value of Y at time t depends 
on its value in the previous two time periods, the Y values 
being expressed around their mean value δ. In general, we 
can have 

   ...)()( 2211    ttt YYy  

(7)                                         )( tptp uY    

in which case  ��  is a pth­order autoregressive, or 
AR(p),process. 

ii.) Moving Average (MA) process 

The AR process just discussed is not the only mechanism 
that may have generated Y. Suppose we model Y as 
follows: 

(8)                                    110  ttt uuuY   

where μ is a constant and u is the white noise stochastic 
error term. Here Y at time t is equal to a constant plus a 
moving average of the current and past error terms. Thus, 
we say that Y follows a first­order moving average or an 
MA (1), process. But if Y follows the expression 

(9)                     22110   tttt uuuuY     

then it is an MA (2) process. 
More generally,      

(10)  ...22110 ptptttt uuuuuY     

iii.) The Autoregressive Moving Average (ARMA) models 
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An ARMA (p, q) model is a combination of AR (p) and 
MA (q) models and is suitable for Univariate time series 
modeling. In an AR (p) model the future value of a 
variable is assumed to be a linear combination of p past 
observations and a random error together with a constant 
term. Mathematically the AR (p) model can be expressed 
as; 

(11)                                          .....
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Here �� and �� are respectively the actual value and random 
error (or random shock) at timeperiod t, (i = 1, 2... p), ϕ = 
are model parameters and c is a constant. The integer 
constant p is known as the order of the model. Sometimes 
the constant term is omitted for simplicity. Usually For 
estimating parameters of an AR process using the given 
time series, the Yule­Walker equations are used.Just as an 
AR (p) model regress against past values of the series, an 
MA (q) model uses past errors as the explanatory variables. 
The MA (q) model is given by  

(12)                                          .....
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Here μ is the mean of the series, (j =1, 2... q) ��= are the 

model parameters and q is the Order of the model. The 
random shocks are assumed to be a white noise process, 
i.e. a sequence of independent and identically distributed 
(i.i.d) random variables with zero mean and a constant 
variance σ. Generally, the random shocks are assumed to 
follow the typical normal distribution. Mathematically an 
ARMA (p, q) model is represented as  

(13)               1 tjttt YCY      

Here the model orders p, q refers to p autoregressive and q 
moving average terms. 
 
iv.) Autoregressive Integrated Moving Average 

(ARIMA) model 

The ARMA models, described above can only be used for 
stationary time series data. However in practice many time 
series such as those related to socio­economic and business 
show non­stationary behaviour. Time series, which contain 
trend and seasonal patterns, are also non­stationary in 
nature. Thus from application view point ARMA models 
are inadequate to properly describe non­stationary time 
series, which are frequently encountered in practice. For 
this reason the ARIMA model is proposed, which is a 
generalization of an ARMA model to include the case of 
non­stationarity as well. In ARIMA models a non­
stationary time series is made stationary by applying finite 

differencing of the data points. This is written as ARIMA 
(p, d, q). 
Here, p, d and q are integers greater than or equal to zero 
and refer to the order of the Autoregressive, integrated, and 
moving average parts of the model respectively. The 
integer d controls the level of differencing. Generally d=1 
is enough in most cases. When d=0, then it reduces to an 
ARMA (p, q) model. It is widely used for non­stationary 
data, like economic and stock price series. 
 
C. Box-Jenkins Methodology 

After describing various time series models, the next issue 
to our concern is how to select an appropriate model that 
can produce accurate forecast based on a description of 
historical pattern in the data and how to determine the 
optimal model orders. Box and Jenkins (1973) developed a 
practical approach to build ARIMA model, which best fit 
to a given time series and also satisfy the parsimony 
principle. Their concept has fundamental importance on 
the area of time series analysis and forecasting. 
The Box­Jenkins methodology does not assume any 
particular pattern in the historical data of the series to be 
forecasted. Rather, it uses a three step iterative approach of 
model identification, parameter estimation, and 
diagnostic checking to determine the best parsimonious 
model from a general class of ARIMA models. This three­
step process is repeated several times until a satisfactory 
model is finally selected. Then this model can be used for 
forecasting future values of the time series. 

The ‘auto.arima’ function 
This is a function in the package forecast in R. It returns 
the best ARIMA model according to either of the 
information criteria: AIC, AICc or BIC value. The function 
conducts a search over possible models within the order 
constraints provided. 
 
D. Hyndman-Khandakar (2008) algorithm for 
automatic ARIMA modelling 
 
1. The number of differences d is determined using 
repeated KPSS tests. 
2. The values of p and q are then chosen by minimizing the 
AICc after differencing the data d 
times. Rather than considering every possible combination 
of p and q, the algorithm uses a stepwise search to traverse 
the model space. 
(a) The best model (with smallest AICc) is selected from 
the following: 
ARIMA(2,d,2), ARIMA(0,d,0), ARIMA(1,d,0), 
ARIMA(0,d,1).  
If d = 0 then the constant c is included; if d ≥ 1 then the 
constant c is set to zero. This is called the ”current model”. 
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(b) Variations on the current model are considered: vary p 
and/or q from the current model by ±1; include/exclude c 
from the current model. The best model considered so far 
(either the current model, or one of these variations) 
becomes the new current model. 
(c) 2(b) is repeated until no lower AICc can be found. 

III. ANALYSIS 

Table 1: Exchange rate of Dollar­Naira from 1972 – 2017 
 

Year 
Exchange 

rate (N) 
          

Year 
Exchange 

rate (N) 

1972 0.66 1995 21.90 

1973 0.66 1996 21.88 

1974 0.63 1997 21.89 

1975 0.62 1998 21.89 

1976 0.62 1999 92.34 

1977 0.65 2000 101.70 

1978 0.61 2001 111.23 

1979 0.60 2002 120.58 

1980 0.55 2003 129.22 

1981 0.62 2004 132.89 

1982 0.67 2005 131.27 

1983 0.72 2006 128.65 

1984 0.77 2007 125.81 

1985 0.89 2008 118.55 

1986 1.75 2009 148.90 

1987 4.02 2010 150.30 

1988 4.54 2011 153.86 

1989 7.36 2012 157.50 

1990 8.04 2013 157.31 

1991 9.91 2014 183.51 

1992 17.30 2015 204.85 

1993 22.07 2016 345.85 

1994 22     
Source: CBN bulletin, 2015 

Fig. 1: Time plot of Dollar – Naira from 1972­2017 
 

The time plot shows that the time series data is not 
stationary since the time plot show upward movement 
(trend) which means that the mean of Exchange rate in 
Nigeria is changing and there is no stability in the variance 
of the time series data. 
 
 

 
Fig. 2: Plots of Exchange rates series before differencing 

 

There is evidence of non stationarity in the above ACF 
plot, the relationship between the series and the lagged is 
also obvious, and moreover since the variances are not also 
constant, Dickey­Fuller test cannot be used. The next step 
is to difference or transform the data. 
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Fig. 3: ACF and PACF of series after differencing 

 
With no spike outside bands in the ACF and PACF plots, it 
can be assumed that the series is stationary at order 1. 
 
Table 2: ARIMA Model Identification 
 

Model Log-Likelihood AIC BIC 

ARIMA (0,1,0) ­208.81 419.62 421.42 

ARIMA (1,1,0) ­208.80 421.61 425.22 

ARIMA (2,1,0) ­207.17 420.34 425.76 

ARIMA (0,1,1) ­208.80 421.61 425.22 

ARIMA (2,1,1) ­207.17 422.34 429.57 

ARIMA (1,1,2) ­207.30 422.59 429.82 

ARIMA (1,1,3) ­207.30 424.59 433.62 

auto.arima -206.96 417.92 421.53 

 
From table above, it can be observed that the optimal 
model is ARIMA (0, 1, 0) that is based on the selection 
criterion log­likelihood, AIC, and BIC. This gives the best 
fit for the data.  
 
The model is now 
ARIMA(0,1,0) with drift          
Coefficients: 
drift 
      7.0409 
s.e.  3.5851 
sigma^2 estimated as 591.5: log 
likelihood=-206.96 
AIC=417.92   AICc=418.2   BIC=421.53 
 
A. Testing for residual white noise in the optimal 

model 

One of the commonest tests for model adequacy is making 
sure that the residual of the optimal model must be white 

noise by the ACF for residuals and by the use of theBox­
Ljung test. 
 

 
Fig. 4: The ACF plot of the residuals from the ARIMA 

(0,1,0) model 
 

 
B. Box-Ljung test 

 
X-squared = 13.553, df = 20,  
p-value = 0.8524 

 
The ACF plot of the residuals from the ARIMA (0,1,0) 
model shows all correlations within the threshold limits 
indicating that the residuals are behaving like white noise. 
A Box­Ljung test returns a large p­value (0.8524), also 
suggesting the residuals are white noise and that the model 
is adequate  
 

Table 3: Summary measures of the Forecast Accuracy 
 

Model ME RMSE MPE 

ARIMA (0,1,0) 6.7707 24.78 421.42 

ARIMA (1,1,0) 5.1910 23.76 425.22 

ARIMA (2,1,0) 6.7978 24.78 425.76 

ARIMA (0,1,1) 5.2356 23.75 425.22 

ARIMA (2,1,1) 5.5258 23.83 429.57 

ARIMA (1,1,2) 6.8878 24.78 429.82 

ARIMA (1,1,3) 5.5299 23.82 433.62 

auto.arima 0.0014 23.78 -324.09 
 
 

where ME, RMSE, and MPE stand for, Mean Error, Root 
Mean Square Error, and Mean Percentage Error. The 
lowest values of the measures of accuracy indicate the 
optimal ARIMA model for reliable forecast.  
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Fig. 5: Comparison of various ARIMA models 
 

In fig. 5, 1 represents the first model, 2 the second, 3 the 
third and so on. It can be seen from the chart that the best 
ofthemodels is the first, it fits the real series more than the 
others 
Table 3: Forecasts of Exchange rate for 13 years (2018 ­ 
2030) 
 

Year Forecasts (N) Lo.95 (N) Hi.95 (N) 

2018 324.54 276.87 372.21 

2019 331.58 264.17 399.00 

2020 338.62 256.06 421.19 

2021 345.66 250.33 441.00 

2022 352.70 246.11 459.30 

2023 359.75 242.98 476.51 

2024 366.79 240.67 492.91 

2025 373.83 239.00 508.66 

2026 380.87 237.86 523.88 

2027 387.91 237.17 538.65 

2028 394.95 236.85 553.05 

2029 401.99 236.86 567.12 

2030 409.03 237.16 580.91 

 

Fig. 6: Forecasts made using the optimal model (in blue) 

 

The table and the figure (table 3 and figure 6) above show 
upward movement in the forecasts of Dollar to Naira from 
2018 – 2030. Using the model obtained, this means there 
will be a continuous and perpetual increase in the exchange 
rate unless a measure is taken by the appropriate authority. 
 
 
 
.  

IV. RESULTS 

Result of the analysis revealed that the series became 
stationary at first difference. The diagnostic checking has 
shown that ARIMA (0, 1, 0) is appropriate or optimal 
model based on the Log­likelihood, AIC, and BIC. The 
performance of auto.arima function in R gives the best 
model for exchange of dollar to Naira without the rigours of 
testing for other ARIMA models. With Minimum Mean 
Error (ME), Mean Percentage Error (MPE), and Root Mean 
Squared Error (RMSE), which proves that ARIMA (0, 1, 0) 
model is the best or optimal model. The residual of the 
forecast model is white noise, and the hypothesis of 
adequate model using B­J test is not rejected, which means 
that the model is adequate. The model is used to make some 
forecasts (2018 ­ 2030). Also other models were compared 
graphically with the optimal models. 

V. CONCLUSION  

Using the results above, it can be concluded that the best 
model for forecasting Dollar to Naira exchange rate is 
ARIMA (0,1,0) obtained through the use of the function 
auto.arima. Time series data analysts are encouraged to 
explore R in order to discover better methods. 
 

References 
 

[3] Box, G.E.P and G.M Jenkins (1976): Time series 
Analysis; Forecasting and Control, Holden – 
DayInc., USA, pp. 574 

[4] Duncan, R., S. Cuthbertson, and M. Bosworth (1999).  
“Pursuing Economic Reform in the Pacific“, 
Pacific Studies Series No.18, Asian Development 
Bank, Manila. 

[5] Harrison E. (2012):“Forecasting Nigeria naira – US 
dollar exchange rate by a Seasonal ARIMA 
model”. American Journal of scientific research, 
Issue 59 (2012), pp. 71­78.  

[6] Hyndman, R.J. and Khandakar, Y. (2008):Automatic 
time series forecasting: Theforecast package for 
R, Journal of Statistical Software, 26(3) [7] Isard 
P. (2007): Equilibrium Exchange Rates: 
Assessment Methodologies, International 
Monetary Fund  



Nigeria Statistical Society 
                                         Edited Proceedings of 1st International Conference                                           Vol. 1, 2017 

198 

 

 
© 2017, A Publication of Nigeria Statistical Society 

 

[7] Kwiatkowski, D., Phillips, P. C.B., Schmidt, P, and 
Shin, Y. (1992), “Testingthe Null Hypothesis of 
Stationarity Against the Alternative of a Unit 
Root,” Journal of Econometrics, 54: 159­178. 

[8]Ogunleye, E. R. (2009). “Exchange Rate Volatility and 
Foreign Direct Investment in Sub­Saharan Africa: 
Evidence from Nigeria and South Africa” In. 
Adeola Adenikinju, Dipo Busari and Sam Olofin 
(ed.) Applied Econometrics and Macroeconomic 
Modelling in Nigeria. Ibadan University 

[9]Newaz M.K (2008):“Comparing the performance of 
time series models for forecasting exchange 
rate”.BRAC university journal Vol no (2), 2008 
pp. 55­65 

[10] Shittu, O. I. and Yaya, O. S. (2008):“Measuring 
forecast performance of ARMAand ARFIMA 
model: An application to US dollar/ UK pounds 
foreign exchange”. European Journal of scientific 
research Vol 32 No.2 (2009). Page 167 ­176. 

[11] Olowe, R. A. (2009), “Modeling Naira/Dollar 
exchange rate volatility: Application of GARCH 
and asymmetric models”, International Journal of 
Business Research Papers, Vol. 5, No. 3, pp. 378­
398. 

 [12]Shittu, O.I (2008). “Modeling exchange rate in 
Nigeria in the presence of financial and political 
Instability: an Intervention analysis approach”. 
Middle Eastern finance and economic journal, 
issues 5(2009). 

[13]Thomas, R. L. (1997). “Modern Econometrics, An 
Introduction, Sydney“: Addison Wesley, pp.452. 
Treadgold, 

[14]Yinusa, D.O. and Akinlo, E. A. (2008). “Exchange 
Rate Volatility, Currency Substitution and 
Monetary Policy in Nigeria” MPRA Paper No. 
16255. 

. 
 
.

. 
 


