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Abstract — Lake Chad, African’s largest endorheic lake 
is a source of fresh water and irrigation for over 40 
million inhabitants. Historically, Lake Chad total water 
surface was once over 25, 000 Kilometre square and is 
currently on the decline. Aside seasonal supplies of 
water from its large tributaries or basins which span 8 
countries, making it Africa’s largest basin. The lake 
precipitation regime is itself an important source of 
water to Lake Chad: The objectives of this study were 
to understand the behavioural patterns of precipitation 
and their relationship with each other over the last two 
decades. Lake Chad was divided into five strata, 
namely: South Basins, Archipelagos, Great Barriers, 
North Basins, and Inundated Areas. Daily precipitation 
values (7,164 observations per stratum) were extracted 
from the National Aeronautics and Space 
Administration’s Global Precipitation Measurement 
(GPM) Integrated Multi–SatellitE Retrievals archived 
in Google Earth Engine (GEE) platform. GPM datasets 
from January 2001 to August 2020 were extracted for 
each stratum using java scripts in GEE. Number of lags 
used for each stratum were selected using Akaike 
Information Criterion (AIC): 25, 32, 22, 32, and 35 
respectively. Augmented Dickey–Fuller (ADF) test 
revealed each time series to be stationary at 0.05 
confidence level. Prophet Forecasting was carried out 
on each time series with different change point prior 
scale. Accuracy was judged with Mean Square Error 
(MSE), Root Mean Square Error (RMSE) and Welch’s 
t-test at 0.05 confidence level.  

Keywords - ADF, AIC, Change Point, Precipitation, Prophet 
Forecasting, RMSE. 

 
I. Introduction 

Lake Chad   is situated within the borders of Cameroun, 
Chad, Niger, and Nigeria. It supports the socioeconomic 
activities of almost 40 million people (Pham–Duc et al., 

2020) and the ecological activities of a wide variety of 
vegetation and aquatic life (Zeiba et al, 2017). The lake has 
been described as shrinking at an alarming rate 
(Ikusemoran et al., 2018) with only 90% decrease from 
1990 (Policelli et al., 2018). Decadal climate change has 
been cited as a major culprit (Gao et al., 2011) with 
consequent developmental, food, health and security 
challenges (PLAN International, 2018).  

This study answered the following questions: How 
has precipitation changed in Lake Chad over the last two 
decades? If there are changes, has it been the same across 
the Lake? Can precipitation in one part of the lake be 
useful in predicting precipitation in another? What should 
we expect about future precipitation around Lake Chad? 
This study focuses on precipitation alone: it does not 
consider other sources of water to Lake Chad. Neither does 
it consider other environmental or socio–economic factors 
with respect to the lake. 

Zeiba et al. (2017) examined the seasonal migration 
of people in search of water and other  resources around 
the Lake Chad basin and came to the conclusion that the 
shrinking lake, political instability from the Nigerian 
border, and the increasing population around Lake Chad is 
further compounding the delicate situation of the 
inhabitants in that region. Ikusemoran et al. (2018) came to 
the conclusion that what is left of Lake Chad is towards the 
South East of the region and recommended a close 
monitoring of the climatic conditions of the Lake Chad 
region. Pham–Duc et al. (2020) provided an understanding 
of the hydrological dynamics in the Lake Chad region and 
proposed a developmental template. Policelli et al. (2018) 
“addressed important questions about the size and trend of 
Lake Chad’s total surface water area”. The only noticeable 
advantage of the shrinking Lake is the new farming 
opportunities it provides but that is quickly cancelled out 
by unsustainable agricultural practices which some are 
calling “the impacts of poor agricultural resource 
management” such as “land degradation and loss of 
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agricultural biodiversity” not to mention the reduced 
access to water (Zeiba, et al., 2017). 

When carrying out time series analysis, there are 
numerous models to choose from, but Akaike Information 
Criterion (AIC) is a consistent and robust means of model 
selection (Pho et al., 2019). According to Paparoditis and 
Politis (2018): “the limiting distribution of the augmented 
Dickey–Fuller (ADF) test under the null hypothesis of a 
unit root is valid under a very general set of assumptions 
that goes far beyond the linear AR(∞) process assumption 
typically imposed”.  

The real issues associated with granger causality 
analysis lies with stationarity, linearity, noise, sampling 
rates and temporal or spatial aggregations that occur during 
data acquisition (Barnett et al., 2018). Producing “reliable 
and high quality forecast” is a daunting task because time 
series forecasting is a specialized skill that involves years 
of practice (Taylor & Letham, 2017). 

 The Prophet Forecasting Procedure makes it easy to 
adjust the parameters of a decomposable time series model 
by an optimization algorithm that terminates at 
convergence. Taylor and Letham (2017) proposed “a 
modular regression model with interpretable parameters” 

that is easily adjusted by anyone with a practical 
knowledge and understanding of time series. 

 
II. Methodology 

The study area is divided into five classes of interest 
(Archipelago, Great Barrier, Inundated, North Basin and 
South Basin), here called strata (Figure 1). Four of the 
strata (South Basin, Archipelago, Great Barrier, and North 
Basin) were based on stratifications suggested by Lemoalle 
et al., 2012. An extra stratum (Inundated Area) was added 
to the Northern Part of the Lake. Five (5) geometric points 
were randomly placed within each stratum and 
precipitation values were extracted from the Global 
Precipitation Measurement (GPM) Integrated Multi–
SatellitE Retrievals (IMERG) archive (Huffman et al., 
2019) using Google Earth Engine (Gorelick et al., 2017). A 
buffer of 30 metre radius was created around each point 
and data extracted from these buffers were averaged for 
each stratum. Each stratum had a total of 7,164 
observations from 1st of January 2001 to 12th of August 
2020. 
 

 

Figure 1: The Study Area (Lake Chad) showing the Different Strata 

Consequently, let 𝒚𝒊 be the precipitation series observed at 
the stratum of interest, 𝒊 (= 1,2, … ,5); that is, 

𝒚𝒊 = [𝑦௜(1), 𝑦௜(2), … , 𝑦௜(𝑡)],   (1) 

where 𝑦௜(𝑡) represent the observed value of precipitation at 
stratum 𝒊 at time 𝒕 and each category of the class of interest 
(that is, Archipelago, Great Barrier, Inundated, North 
Basin and South Basin) is presented by 𝒊. 



Professional Statisticians Society of Nigeria 
                                         Edited Proceedings of 4th International Conference                                           Vol. 4, 2020 

698 

 

 
© 2020, A Publication of Professional Statisticians Society of Nigeria 

 

Akaike Information Criterion (AIC) 
Let Stratum 1 be our Stratum of interest, and let 𝑦ௌ௧௥௔௧௨௠ ଵ 
be a time series for precipitation in Stratum 1. Let AR(1), 
AR(2), . . ., AR(𝑛), AR(𝑛 + 1), AR(𝑛 + 2), . . ., AR(𝑚)  
be the possible number of autoregressive processes: 
1, 2, . . . , 𝑛, 𝑛 + 1, 𝑛 + 2, . . . , 𝑚 are the lag values for the 
respective AR processes, 𝑚 is the maximum lag, and 𝑘ଵ, 
𝑘ଶ, . . ., 𝑘௡,  𝑘௡ାଵ, 𝑘௡ାଶ, . . ., 𝑘௠be the number of 
estimated parameters in models AR(1), AR(2), . . ., AR(𝑛), 
AR(𝑛 + 1), AR(𝑛 + 2), . . ., AR(𝑚) respectively. The 
Akaike Information Crite--rion (AIC) (Akaike, 1973; 
Akaike, 1974; McElreath, 2016) of an arbitrary AR(𝑛) 
process is given as: 
                               𝐴𝐼𝐶௡ = 2𝑘௡ − 2 ln൫𝐿෠௡൯            (2) 
where 𝐿෠௡ is the maximum value of the likelihood function 
of the AR(𝑛) process. Given AR(1), AR(2), . . ., AR(𝑛), 
AR(𝑛 + 1), AR(𝑛 + 2), . . ., AR(𝑚)  with the respective 
AIC values 𝐴𝐼𝐶ଵ, 𝐴𝐼𝐶ଶ, . . ., 𝐴𝐼𝐶௡, 𝐴𝐼𝐶௡ାଵ, 𝐴𝐼𝐶௡ାଶ, . . ., 
𝐴𝐼𝐶௠. The preferred AR process is the one with minimum 
AIC value. 

Augmented Dickey–Fuller Test 
Let Stratum 1 be our Stratum of interest, and let 𝑦ௌ௧௥௔௧௨௠ ଵ 
be a time series for precipitation in Stratum 1. The 
autoregressive model of 𝑦ௌ௧௥௔௧௨௠ ଵ depicted with the 
autoregressive process AR(𝑙) and written as: 
                               𝑦௧ೄ೟ೝೌ೟ೠ೘ భ

=  𝜃଴ +  𝜃ଵ𝑦௧ିଵ +

 𝜃ଶ𝑦௧ିଶ+ .  .  . + 𝜃௟𝑦௧ି௟ +  𝜀௧                       (3) 
Where 𝜃଴ is a constant, 𝜃ଵ, . . . , 𝜃௟ are coefficients of the 
lags 𝑦௧ିଵ, . . . , 𝑦௧ି௟ respectively, 𝑡 is the time point of the 
variable of interest, 𝑙 is the number of lags, and 𝜀௧ is the 
error term. The Augmented Dickey Fuller Test (Elliott et 
al., 1996; MacKinnon, 2010) is applied to the model: 
               ∆𝑦௧ೄ೟ೝೌ೟ೠ೘ భ

=  𝜃଴ +  𝜑𝑡 +  𝜕ଵ𝑦௧ିଵ +

 𝜕ଶ𝑦௧ିଶ+ .  .  . + 𝜕௟ିଵ𝑦௧ି௟ାଵ +  𝜀௧                   (4) 
Where 𝜃଴ is a constant, 𝜑 is the time trend coefficient, 
and 𝑙 is the number of lags of the AR process. The lag 
length is determined by examining the Akaike Information 
Criterion (AIC) and picking the AR model with the 
appropriate lag length. 

Prophet Forecasting Procedure 
Prophet model (Taylor & Letham, 2017) is an additive 
regression technique developed by Facebook to handle 
business–related modelling problems. The model is 
developed on the idea that a time series is decomposable 
into three component parts: the trend, seasonal effect and 
holiday effect (Harvey & Peters, 1990). In a combined 
state, the Prophet Forecasting Model assumes the form: 

                 𝑦௜(𝑡) = 𝜑(𝑡) +  𝜏(𝑡) + 𝜔(𝑡) +  𝜀௧ (5) 

where 𝑦௜(𝑡) is the value of precipitation for stratum 𝒊 at 
time 𝒕, 𝜑(𝑡) is the trend, 𝜏௧ is the additive seasonality, 𝜔௧ 
is the holiday, and 𝜀௧ is the error term. Multiplicative 
seasonality can be achieved through log transformation 
(Taylor & Letham, 2017). In this work, the precipitation 
measurements are considered to be continuous throughout 
the period of observation. In other words, there are no 
occasions of halting measurement. Therefore, the holiday 
effect, 𝜔(𝑡), takes the value zero. Therefore, equation (5) 
is simplified to: 
                                 𝑦௜(𝑡) = 𝜑(𝑡) +  𝜏(𝑡) + 𝜀௧ (6) 

Since the maximum precipitation observation do not 
exhibit a saturating growth, the trend component of 
equation (6) is modelled by a piecewise linear growth 
model of mathematical form: 

             𝜑(𝑡) = (𝑟 +  𝑎்(𝑡)𝜗)𝑡 + (𝑝 + 𝑎்(𝑡)𝛿)   (7) 

where 𝑟 is the growth rate,  𝑎்(𝑡) is the transpose of the 
vector 𝑎(𝑡) ∈ {0, 1}, which is the vector of the rate at any 
time 𝑡, 𝜗 ∈ 𝑅 is a vector of rate of adjustment, 𝑝 is the 
offset parameter, and 𝛿 is the actual adjustment. 
 The multiperiod seasonal component of equation 
(6) is modelled using the Fourier series expressed in the 
form: 
                               𝜏(𝑡) =  𝑀(𝑡)𝜕 =

 ∑ ቀ𝛼௜ cos ቀ
ଶగ௜௧

௉
ቁ +  𝛽௜ sin ቀ

ଶగ௜௧

௉
ቁቁே

௜ ୀଵ    (8) 

where  
                                𝑀(𝑡) =

 ቂcos ቀ
ଶగ(ଵ)௧

ଷ଺ହ.ଶହ
ቁ , . . . , sin ቀ

ଶగ(ே)௧

ଷ଺ହ.ଶହ
ቁቃ                 (9) 

 

P is the regular, or annual, periodicity (𝑃 = 365.25) while 
N is the number of parameters. The seasonality model is 
fitted by estimating the 2𝑁 parameters 𝜕 =
 [𝛼ଵ, 𝛽ଵ, . . . , 𝛼ே , 𝛽ே] ், which is assumed to have a 
Gaussian distribution (𝜕 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎ଶ)). 

Similarity measure 
The measure of similarity is built around three intuitions: 
(1) the more features two objects share, the more similar 
they are; (2) the more differences there are between two 
objects, the less similar they are; and (3) maximum 
similarity occurs when two objects are similar. It is 
quantified as either the cost of transforming one object into 
another or as the inverse of the distance between two or 
more objects (Cleasby et al., 2019). To assess the similarity 
between two time series variables, the pairwise distance of 
the two variables’ trajectory is measured. 

Several methods are available for time series 
trajectory quantification. One of the most popular and 
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robust of these methods is the Dynamic Time Warping 
(DTW) algorithm (Cleasby et al., 2019). DTW algorithm is 
an elastic measure (can be used with trajectories of 
different lengths or phases) for computing the distance and 
alignment between two time series (Seto et al., 2015). For 
the purpose of this work, the algorithm of the DTW is 
presented as follows. 
Let 𝒚𝒊 be as defined in equation (1) above, where 𝒊 (=
1,2, … ,5), and each 𝒊 is of length 𝒕. The DTW algorithm 
for any two of the series in 𝒊, given 𝒚𝒊 =
[𝑦௜(1), 𝑦௜(2), … , 𝑦௜(𝑡)], 𝑡 ∈  ℕ and   𝒚𝒋 =

ൣ𝑦௝(1), 𝑦௝(2), … , 𝑦௝(𝑡)൧, 𝑡 ∈  ℕ, involves derivation of the 
distance, or local cost, matrix, ∁ ∈  ℝ்×் (where 𝑇  =   𝑡), 
which is the pairwise distances between the alignment of 
the two sequences,   𝒚𝒊 and   𝒚𝒋:  

  ∁௟  ∈  ℝ்×்: 𝑐௜,௝ = ฮ𝑦௜ − 𝑦௝ฮ , 𝑖 ∈ [1: 𝑇], 𝑗 ∈ [1: 𝑇] (10) 

The alignment path built by the DTW algorithm is a 
sequence of points 𝑝 = (𝑝ଵ, 𝑝ଶ, … , 𝑝௄) with 𝑝௟ = ൫𝑝௜ , 𝑝௝൯ ∈

 [1: 𝑇]  ×  [1: 𝑇] 𝑓𝑜𝑟 𝑙 ∈  [1: 𝐾] which must satisfy the 
boundary condition (𝑝ଵ = (1,1) and 𝑝௄ = (𝑇, 𝑇)), 
monotonicity condition (𝑡ଵ ≤ 𝑡ଶ ≤ ⋯ ≤ 𝑡௄)  and step–size 
condition (𝑝௟ାଵ − 𝑝௟  ∈  {(1,1), (1,0), (0,1)}). The cost 

function associated with the warping path computed with 
respect to the local cost is: 

                 𝑐௣൫𝑦௜ , 𝑦௝൯ = ∑ 𝑐(𝑦௧௟ , 𝑦௧௟)௅
௟ୀଵ                (11) 

while the optimal warping path, 𝑐௣∗൫𝑦௜ , 𝑦௝൯, also referred to 
as the warping path with the minimal associated cost, is 
given as: 
           𝑐௣∗൫𝑦௜ , 𝑦௝൯ = 𝑚𝑖𝑛൛𝑐௣൫𝑦௜ , 𝑦௝൯, 𝑝 ∈  𝑃் ×்ൟ  (12) 
where 𝑃் ×் is the set of all possible warping paths which 
builds the accumulated cost matrix at time cost 𝑂(𝑇ଶ). The 
value of 𝑐௣∗൫𝑦௜ , 𝑦௝൯ ranges from zero to infinity with larger 
values connoting lower similarity. 
 

III. RESULTS 

Data analysis was carried out using Python Programming 
Language version 3.7 (Van Rossum & Drake, 2009). 
Packages used include: NumPy (Oliphant, 2006; van der 
Walt et al., 2011), Matplotlib (Hunter, 2007), Pandas 
(McKinney & others, 2010), SciPy (Virtanen et al., 2020), 
Seaborn (Waskom et al., 2017), Statsmodels (Seabold et 
al., 2010) and Prophet (Taylor & Letham, 2017). 
 

 
Table 1: Pearson’s Correlation Matrix of Time series 

 South Basin Archipelago Great Barrier North Basin Inundated 
South Basin 1.0000     
Archipelago 0.7788 1.0000    
Great Barrier 0.7950 0.7166 1.0000   
North Basin 0.6159 0.5996 0.7963 1.0000  
Inundated 0.4830 0.5050 0.6070 0.7831 1.0000 

 
Preliminary analysis showed that there has been a steady 
decline in the amount of surface water in Lake Chad 

(Figure 2). Also, for the most part, there was strong 
positive correlation between pairs of precipitation 
observations from the different strata (Table 1).  

 

 
Figure 3: Time Series Graph of Precipitation from all Strata 
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Figure 3 shows a seasonality in the amount of daily 
precipitation level over the years. It also shows a rhythm in 
the seasonality of precipitation from the different strata. 
Each time series was found to be stationary after 

undergoing Augmented Dickey–Fuller (ADF) test at 0.05 
confidence level (Table 2). 
 

 
 

 
Figure 2: Classified Images of Lake Chad Showing the Decline in Open Water 

Figure 2 contains classified images of the study area over 
the years from 2000 to 2020. The images contain five 
classes: Water, Reeds, Tree Cover, Inundated areas, and 
Archipelagoes. There has been a steady decline in the 

amount of Open Water over the years. From 25.67% in 
Year 2000 to 17.46% in Year 2020. 
 

Table 2: Augmented Dickey–Fuller Stationarity Test 

Stratum Number of Lags ADF Test Statistic P–value 
South Basin 25 -8.8176 1.9150e-14    ** 
Archipelago 32 -8.0691 1.5669e-12    ** 
Great Barrier 22 -9.2393 1.5981e-15    ** 
North Basin 32 -8.6937 3.9781e-14    ** 
Inundated 35 -7.8339 6.1889e-12    ** 

 
 
Number of lags used in the study were based on Akaike 
Information Criterion (AIC). Welch’s t–Test was carried 

out at 0.05 confidence level between pairs of variables to 
see if there is a statistical significant difference in 
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precipitation from the different strata. Granger causality 
was also tested between pairs of time series at 0.05 
confidence interval. The time series each with 7,164 time 
points were split into two parts for the forecasting. 6,939 
points were used for training while 225 were used for 
validating the model. Forecasting was carried out on each 
time series with different change point prior scales (0.01, 
0.05, 0.10, and 0.50). The model converged for each time 
series after different number of iterations. The Prophet 
optimization algorithm terminates once convergence has 
been detected. Convergence is detected when the relative 

gradient magnitude is below the tolerance level. Accuracy 
was judged with Mean Square Error (MSE), Root Mean 
Square Error (RMSE) and Welch’s t-test at 0.05 
confidence level. 

There is no statistically significant difference in the 
amount of precipitation in the Archipelagos, Great Barrier, 
and the North Basin (Table 3). However, there is a 
significant difference in the amount of precipitation from 
the South Basin and the Inundated areas against each other 
and against other strata. 

 
 

Table 3: DTW Distance and Welch’s t–Test of pairs of Strata from Lake Chad 
Strata Pair Welch’s t–Test Dynamic Time Warping 

(DTW) Distance Stratum 1 Stratum 2 Statistic P – value 
South Basin Archipelago 5.9850 2.2242e-09    ** 15.7908 
South Basin Great Barrier 4.9103 9.2015e-07    ** 14.2463 
South Basin North Basin 4.7683 1.8776e-06    ** 19.5438 
South Basin Inundated 10.7062 1.3256e-26    ** 14.6710 
Archipelago Great Barrier -1.0313 0.3024 10.8630 
Archipelago North Basin -1.1391 0.2547 10.3869 
Archipelago Inundated 5.7400 9.6821e-09    ** 11.6490 
Great Barrier North Basin -0.1152 0.9083 12.5077 
Great Barrier Inundated 6.4132 1.4790e-10    ** 10.3426 
North Basin Inundated 6.4368 1.2680e-10    ** 12.7397 

 
** There is a significant difference in the amount of precipitation from the two strata at 0.05 confidence level. 

Prophet Forecasting 

There was no significant difference between the predicted 
and the actual time series data for precipitation from the 
different strata at 95% confidence interval. Tables 4, 5, 6 
and 7 show the results at different change point prior 

scales: 0.01, 0.05, 0.10, and 0.50. The test statistics for the 
Welch’s t–Test for South Basin, Archipelago, Great 
Barrier, North Basin, and Inundated at a change point prior 
scale of 0.01 (Table 4) are -0.6953, -1.6406, -1.0152, -
0.8597, and -0.9612 respectively. 
 

Table 4: Accuracy measurement at Change Point Prior Scale of 0.01 
 

Stratum 
Number of 
Iterations 

Mean Square 
Error (MSE) 

Root Mean Square 
Error (RMSE) 

Welch’s t – Test 
Statistic P–Value 

South Basin 49 0.1403 0.3745 -0.6953 0.4874 
Archipelago 44 0.1482 0.3849 -1.6406 0.1022 
Great barrier 97 0.1644 0.4056 -1.0152 0.3110 
North basin 96 0.1558 0.3947 -0.8597 0.3908 
Inundated 114 0.0759 0.2756 -0.9612 0.3374 

 
 
The Mean Square Error (MSE) between the predicted and 
the actual values for South Basin, Archipelago, Great 
Barrier, North Basin, and Inundated at a change point prior 
scale of 0.01 are 0.1403, 0.1482, 0.1644, 0.1558, and 
0.0759 respectively. The Root Mean Square error (RMSE) 
between the predicted and the actual values for South 
Basin, Archipelago, Great Barrier, North Basin, and 

Inundated at a change point prior scale of 0.01 are 0.3745, 
0.3849, 0.4056, 0.3947, and 0.2756 respectively. 

The test statistics for the Welch’s t–Test for South 
Basin, Archipelago, Great Barrier, North Basin, and 
Inundated at a change point prior scale of 0.05 (Table 5) 
are -0.54989, -1.2660, -0.8462, -0.9343, and -0.8443 
respectively. The Mean Square Error (MSE) between the 
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predicted and the actual values for South Basin, 
Archipelago, Great Barrier, North Basin, and Inundated at 

a change point prior scale of 0.05 are 0.1401, 0.1472, 
0.1642, 0.1560, and 0.0758 respectively.  

Table 5: Accuracy measurement at Change Point Prior Scale of 0.05 
 

Stratum 
Number of 
Iterations 

Mean Square 
Error (MSE) 

Root Mean Square 
Error (RMSE) 

Welch’s t – Test 
Statistic P–Value 

South Basin 255 0.1401 0.3743 -0.54989 0.5828 
Archipelago 119 0.1472 0.3837 -1.2660 0.2067 
Great barrier 107 0.1642 0.4052 -0.8462 0.3982 
North basin 231 0.1560 0.3949 -0.9343 0.3511 
Inundated 149 0.0758 0.2754 -0.8443 0.3993 

 
The Root Mean Square error (RMSE) between the 
predicted and the actual values for South Basin, 
Archipelago, Great Barrier, North Basin, and Inundated at 
a change point prior scale of 0.05 are 0.3743, 0.3837, 
0.4052, 0.3949, and 0.2754 respectively. 

The test statistics for the Welch’s t–Test for South 
Basin, Archipelago, Great Barrier, North Basin, and 
Inundated at a change point prior scale of 0.10 (Table 6) 
are -0.4997, -1.1656, -0.7657, -0.8541, and -0.7197 
respectively. The Mean Square Error (MSE) between the 
predicted and the actual values for South Basin, 
Archipelago, Great Barrier, North Basin, and Inundated at 

a change point prior scale of 0.10 are 0.1401, 0.1470, 
0.1641, 0.1558, and 0.0758 respectively.  

The Root Mean Square error (RMSE) between the 
predicted and the actual values for South Basin, 
Archipelago, Great Barrier, North Basin, and Inundated at 
a change point prior scale of 0.10 are 0.3743, 0.3835, 
0.4050, 0.3948, and 0.2752 respectively. The test statistics 
for the Welch’s t–Test for South Basin, Archipelago, Great 
Barrier, North Basin, and Inundated at a change point prior 
scale of 0.50 (Table 7) are -0.4093, -1.0327, -0.7078, -
0.8303, and -0.7056 respectively. 
 

Table 6: Accuracy measurement at Change Point Prior Scale of 0.10 

 
Stratum 

Number of 
Iterations 

Mean Square 
Error (MSE) 

Root Mean Square 
Error (RMSE) 

Welch’s t – Test 
Statistic P–Value 

South Basin 335 0.1401 0.3743 -0.4997 0.6177 
Archipelago 133 0.1470 0.3835 -1.1656 0.2449 
Great barrier 181 0.1641 0.4050 -0.7657 0.4446 
North basin 236 0.1558 0.3948 -0.8541 0.3939 
Inundated 344 0.0758 0.2752 -0.7197 0.4724 

 
The Mean Square Error (MSE) between the predicted and 
the actual values for South Basin, Archipelago, Great 
Barrier, North Basin, and Inundated at a change point prior 

scale of 0.10 are 0.1401, 0.1470, 0.1641, 0.1558, and 
0.0758 respectively. 
 

Table 7: Accuracy measurement at Change Point Prior Scale of 0.50 
 

Stratum 
Number of 
Iterations 

Mean Square 
Error (MSE) 

Root Mean Square 
Error (RMSE) 

Welch’s t – Test 
Statistic P–Value 

South Basin 973 0.1400 0.3742 -0.4093 0.6826 
Archipelago 289   0.1468 0.3831 -1.0327 0.3027 
Great barrier 468 0.1640 0.4050 -0.7078 0.4797 
North basin 681 0.1558 0.3948 -0.8303 0.4072 
Inundated 506 0.0757 0.2752 -0.7056 0.4811 

 
The Root Mean Square error (RMSE) between the 
predicted and the actual values for South Basin, 
Archipelago, Great Barrier, North Basin, and Inundated at 
a change point prior scale of 0.50 are 0.3742, 0.3831, 
0.4050, 0.3948, and 0.2752 respectively. 
 
 

IV. Discussion and Conclusion 

With the exception of the South Basin, and the Inundated 
areas, there is a no statistically significant difference in the 
amount of precipitation from most parts of the Lake 
(Archipelagos, Great Barrier, and North Basin). From 
Figure 2, we see that the majority of Open Water in the 
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Lake in Year 2020 is in the South Basin. The Prophet 
Forecasting Procedure was able to forecast Precipitation 
with good accuracy at different change point prior scale. 
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