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Abstract— This study investigates the different 
performances of parametric and nonparametric bootstrap 
data generating processes (DGPs), by ascertaining the 
conditions where the parametric bootstrap DGP method 
produces minimum error in comparison with the 
nonparametric bootstrap DGP method in terms of root mean 
square and other information criteria. In addition, the 
sampling distribution was identified. The study used 
secondary data from Central Bank of Nigeria (1987-2015) on 
the External Sector (ES). Data were analyzed using different 
bootstrap DGPs with different group proficiency levels, and 
the kernel density of the empirical distributions that are not 
too skewed were considered. In this study, 322560 scenarios 
were replicated 1000 times using bootstrap DGPs and kernel 
density methods. The results show that across all the 
assessment bootstrap conditions considered in the study, the 
parametric bootstrap method performed better than the 
nonparametric bootstrap models by showing the smallest 
conditional bias, standard error and root mean square error 
(RMSE). The kernel density plots revealed that the sampling 
distribution of the ESis a Chi-square distribution. 

Keywords--Parametric, External Sector Statistics, 
Nonparametric, Kernel density, Bootstrap. 

I. INTRODUCTION 

The continuing development of bootstrap methods has 
been motivated by the increasing progress in 
computational speed and efficiency. There are many ways 
to specify the bootstrap data generating process (DGP) for 
models as simple as the linear regression model. This is 
very essential since the estimates based on economic data 
have significant influence on public policy decisions made 
concerning a wide range of issues. For example, 
determination of poverty and inequality within society are 
vital to formulating economic policies that can affect the 
lives of millions. Unfortunately, estimates of these types of 
measures are quite unreliable when based on common 
statistical methods. Frequently, policies are put in place 
based on little more than good faith because reliable 
methods of evaluating the results of existing policies are 

not available. This boils down to [1] recommendations 
which called for more research on the parametric bootstrap 
method and for comparative studies of parametric and 
nonparametric approaches.  

Many researchers have discovered thatthere are many 
possible extensions on the bootstrap methods and the 
necessity to carry out more research in this area[2,3].In this 
study, the various bootstrap DGP approaches were the 
estimation methods of interest. Therefore, the purpose of 
this study is to investigate and understand the parametric 
bootstrap DGP method and to compare the nonparametric 
and parametric bootstrap DGP methods in estimating the 
root mean square error (RMSE) and other information 
criteria under a variety of assessment conditions.  

This study will focus on bootstrapping regression 
models from the external sector with unknown 
distributions under a variety of assessment conditions. 
Moreover, the study will be based on examination of the 
parametric and nonparametric bootstrap DGP functional 
models and also use the kernel density plots to reveal the 
sampling distribution of the ESS. 

II. MATERIALS AND METHODS 

Recently, the bootstrap has been introduced in more 
complex and complicated models. Some of the consulted 
literatures that handled and discussed bootstrap as complex 
and complicated models are [4-18] among others. 

Bootstrapping is the practice of estimating properties 
of an estimator by measuring those properties when 
sampling from an approximating distribution, [18]. One 
standard choice for an approximating distribution is the 
empirical distribution of the observed data. The schematic 
bootstrap shows that in the real world, the unknown 
probability distribution F gives the data X = (x1,x2,…,xn) 
by random sampling; from X we calculate the statistic of 

interest θ�  = s(X). In the bootstrap world, F�  generates X* by 

random sampling giving θ�* = s(X*). There is only one 

observed value of θ� , but we can generate as many 
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bootstrap replications θ�* as affordable. The crucial step in 
the bootstrap process is the process by which we construct 
from x an estimation��of the unknown population F.  The 
bootstrap must be applied on the right distribution to get 
accurate statistical inference, [3].There are many bootstrap 
methods used in econometrics. Among all the bootstrap 
methods the parametric and nonparametric will be 
considered in this study. For a detailed discussion of how 
reliable the bootstrap method is see [19]. Other authors like 
[4-20] have worked extensively on different aspects of 
bootstrap.  

However, an ideal reference and detailed account on 
different aspects of bootstrap of the developments with 
dependent data and independent data, is carried out in [21]. 
A further discussion was made on the smooth bootstrap 
which is equivalent to sampling from a kernel 
density estimate of the data is a small amount of (usually 
normally distributed) zero-centered random noise. The 
zero-centered random noise is now added onto each 
resampled observation while the kernel density is used to 
extract all the important features of the data set. To 
ascertain the accurate statistical inference and achieve the 
set objective in this study; the various assessment 
conditions like the bias, standard error and RMSE will be 
considered. Also, two groups of models will be selected to 
represent the real data sets, after more than 1000 trials 
within each bootstrap level (B). 

III. ANALYSIS 

The major aim of bootstrap testing is that, when a test 
statistic of interest has an unknown distribution under the 
null hypothesis, that distribution can be characterized by 
using information in the data set that is being analyzed. 
Consider the linear regression model 

yt= Xtβ + ut, ~ NID(0,��)                                                (1) 

where E(ut| Xt) = 0, E(usut= 0) ∀s ≠ t,, Xt is a row vector of 
observations on k regressors, n is the number of 
observations, β is a k-vector and ut is the error term. The 
model (1) is a fully             specified parametric model, 
which means that each set of parameter values for β, σ2 

defines just one data generating process (DGP). The first 
step in constructing a parametric bootstrap DGP is to 
estimate (1) by ordinary least square (OLS), yielding the 

restricted estimates��, and �̃2. Then the bootstrap DGP is 
given by 

��
∗ = ���� + ��

∗,  ��
∗~NID(0,s�2),                                       (2) 

which is just the element of the model (1) characterized by 
the parameter estimates under the null, with “asterisk” to 

indicate that the data are simulated. In order to draw a 
bootstrap sample from the bootstrap DGP from equation 
(2), we first draw an n--vector u* from the N(0, �̃2I) 
distribution. For each of the B bootstrap samples, ��

∗, a 
bootstrap test statistic ��

∗is computed from  ��
∗in just the 

same way as �� was computed from the original data, y in 
(1). 

The parametric bootstrap procedure that we have just 
described, based on the DGP (2), does not allow us to relax 
the strong assumption that the error terms are normally 
distributed but if the true error distribution, whether or not 
it was normal, we could always generate the �*from 
equation (2) (see [15,18]). Alternatively, we know that the 
empirical distribution function (EDF) of the error terms is 
a consistent estimator of the unknown cumulative 
distribution function CDF of the error distribution because 
the residuals consistently estimate the errors and it follows 
that the EDF of the residuals is also a consistent estimator 
of the CDF of the error distribution. Thus, from the 
fundamentals of statistics, if we draw bootstrap error terms 
from the empirical distribution of the residuals, we are 
drawing them from a distribution that tends to the true 
error distribution as � → ∞. The value of each drawing 
must be the value of one of the residuals, with equal 
probability for each residual. This is precisely what we 
mean by the empirical distribution of the residuals. On 
average, each of the residuals appears once in each of the 
bootstrap samples. If we adopt this resampling procedure, 
we can write the bootstrap DGP as 

��
∗ = ���� + ��

∗,              ��
∗~���(���)                             (3) 

where EDF(���)denotes the distribution that assigns 
probability 1/n to each of the elements of the residual vector 
(���). The DGP from equation (3) is one form of what is 
usually called a nonparametric bootstrap, although, since it 
still uses the parameter estimate  ��.  

IV. RESULTS 

Examination of Parametric and Nonparametric 
Bootstrap DGP Models 
 
 Each of the bootstrap forms were represented by using at 
least one functional model each from real data sets of a 
particular bootstrap DGP method to illustrate how others 
were estimated before tabulation;  
Here, the original analysis of the data sets will be carried 
out. Recall (1),  

yt= Xtβ + ut,                                                                     (4)    

which is now called (4) will be used to estimate original 
real data sets with fixed sample size is as follows;                             
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Original Model (OM):  
GDPt = bo + b1A+ b2B+ ut                                              (5) 

 Original Model (OM): B=1999, N(0,0.9), 
n1=10000, using (5) 

GDPt  = 31.450IM + 21.730EX                                     (6) 
               Standard error   (0.023)      (0.070) 
Bias                     (0.008)      (0.015)    
    RMSE                   (0.0009)   
The Parametric bootstrap DGP is 

��
∗ = ���� + �(�̂�)��

∗,              ��
∗~���(0,1)             (7) 

where�(�̂�) =  
���

(����)�/� 

 Parametric Model (PM): B=1999, N(0,0.9), 
n1=10000, using (7) 

 GDPt= 68.710IM + 49.940EX             (8)                                              
 Standard error    (0.003)        (0.034) 
 Bias                      (0.001)         (0.010)                  
                   RMSE                    (0.0002) 
Nonparametric bootstrap DGP  

 ��
∗ = ��

∗
�
�� + ��

∗,              [��,
∗ ��

∗]~���(�̅, ��) (9) 

 Nonparametric Model (NPM):  B=1999, N(0,0.9), 
n1=10000,  using (9) 

 GDPt  = 51.46IM + 45.140EX                     (10)                    
 Standard error   (0.015)    (0.044) 
  Bias                   (0.005)     (0.012) 
 RMSE                (0.0005) 

 
Table 1. Bias of the SLR for Parametric Bootstrap Models 
in a Real data set 
 
 

Note. The bold is the smallest value in each row 

 

 
 

Table 2: Standard Error of the SLR for Parametric 
Bootstrap Models in a Real data set. 
 
 
 

 

Table 3: RMSE of the SLR for Parametric Bootstrap 
Models in a Real data set 
 
 
 

bootstrap             Ability          Sample 
level                     Level            Size                            OM                PM                      
NPM             
                                                            200               0.0613         0.1224             0.0680          
                                                          1000               0.03280.0319             0.0323           
                              N(0,1)                10000              0.0329          0.01600.0162 
                                                             200              0.0116         0.0783             0.1195                 
                                                          1000               0.0344         0.0204             0.0397          
   B=99                N(0,0.9)                10000             0.0162          0.0134              
0.0165               
                                                             200             0.0777          0.0829             0.0748           
                                                           1000             0.0345          0.0356             0.0356               
                            N(1,0.25)                10000           0.0176         0.0177             0.0172               
                                                              200             0.0773         0.1224             0.0703  
                         N(0,1)                       1000              0.03280.0298              0.0590                        
                                                           10000            0.0337         0.0329             0.0160              
                                                               200            0.1195         0.0735             0.1216                         
B=499             N(0,0.9)                      1000             0.0304          0.0597             0.0644 
                                                           10000           0.0340         0.0159             0.0166 
                                                             200             0.1227          0.0748             0.1240                          
                       N(1,0.25)                      1000            0.0601         0.0345              0.0599                         
                                                         10000             0.0342          0.0331              0.0176               
                                                             200            0.1063          0.08130.1036                 
                           N(0,1)                      1000           0.0518 0.0333               0.0485               
                                                          10000           0.02970.0172               0.0273                         
                                                             200            0.10520.0828               0.0904              
 B=1999          N(0,0.9)                      1000            0.0506           0.03320.0480                       
                                                         10000            0.0290            0.0170               
0.0188              
                                                             200            0.10420.0814               0.0878              
                       N(1,0.25)                    1000             0.0344 0.0308               0.0485                     
                                                         10000             0.07100.0289                0.0268                     

bootstrap             Ability          Sample 
level                     Level            Size                            OM                PM                      
NPM             
                                                            200               0.0113        0.0224              0.0480       
                                                          1000               0.0328         0.0131              0.0323         
                                N(0,1)                10000             0.0329        0.0168              0.0162         
                                                             200              0.1116        0.0365              0.0812        
                                                          1000               0.0344         0.0204              0.0397              
   B=99                 N(0,0.9)               10000             0.0162         0.0340              0.0114 
                                                             200              0.0777        0.0829              0.0748                
                                                           1000              0.0345        0.0356              0.0356                 
                            N(1,0.25)             10000              0.0176        0.0177               0.0171               
                                                              200             0.0773        0.1224              0.0803                  
                                   N(0,1)               1000            0.0328         0.0598             0.0590                          
                                                           10000           0.0337          0.0329             0.0160 
                                                             200             0.1195          0.0765             0.1216                         
B=499                       N(0,0.9)             1000            0.0604          0.0597            0.0344               
                                                           10000           0.0340          0.0159              0.0166 
                                                              200            0.1227           0.0748           0.1240                         
                                  N(1,0.25)           1000           0.0601           0.0345           0.0599                          
                                                           10000           0.0342          0.0171              0.0177 

                                                             200                0.1063         0.0813        0.1036           
                            N(0,1)                     1000                0.0518          0.0333        0.0485            
                                                          10000               0.0297         0.0172         0.0273                     
                                                             200                0.1052          0.0828         0.0904           
B=1999          N(0,0.9)                      1000                0.0506          0.0332         0.0480                        
                                                          10000               0.0290           0.0170         0.0188             
                                                              200               0.1042          0.0814         0.0878             
                            N(1,0.25)                1000               0.0344           0.0308         0.0485                      
                                                          10000               0.0710          0.0289          0.0268                     

bootstrap             Ability          Sample 
level                     Level            Size                            OM                PM                      
NPM             

                                                            200            0.0713          0.1224                0.0680 
                                                          1000            0.0328         0.03190.0323                 
                           N(0,1)                  10000            0.0329          0.01600.0162 
                                                           200             0.1116         0.0783                 0.0765             
                                                         1000             0.0344         0.0204                0.0397           
     B=99           N(0,0.9)                10000             0.0162         0.0159                 0.0340                        
                                                          200              0.0777         0.0829                 0.0748          
                                                         1000             0.0356        0.0345                 0.0356           
                       N(1,0.25)                10000              0.0176       0.0171                  0.0177                  

                                                          200              0.0773          0.1224                 0.0803             
                          N(0,1)                    1000             0.0328         0.0598                0.0590          
                                                      10000             0.0337          0.0160                 0.0329                 
                                                         200             0.1195          0.0765                 0.1216                    
B=499             N(0,0.9)                  1000              0.0604          0.0597               0.0344           
                                                     10000              0.0340          0.0159               0.0334               
                                                         200              0.1227           0.0748                 0.1240                         
                      N(1,0.25)                 1000               0.0601           0.0345                0.0599                         
                                                     10000              0.0342           0.0331                 0.0171              

                                                        200             0.1063             0.0813               0.1036              
                        N(0,1)                   1000             0.0485            0.0333                0.0376   
                                                    10000             0.0297             0.0485               0.0172                  
                                                        200             0.1052             0.0828               0.0173              
 B=1999        N(0,0.9)                   1000             0.0506            0.0332                0.0177 
                                                     10000            0.0290             0.0170                0.0188               
                                                         200            0.0814             0.1042                0.0878              
                    N(1,0.25)                   1000            0.03440.03080.0899                 
                                                     10000           0.0268             0.0289                0.0185                
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Plot: when n=20 

 

 
Plot: when n=200 

 

 
Plot: when n=2000 
 

Figure 1: Plots with different sample sizes 

V. DISCUSSIONS 

In this study, two groups of models were selected to 
represent the real data sets after more than 1000 trials were 
carried out within each bootstrap level (B). In fact, 322560 
scenarios were replicated more than 1000 times. The 
selection was based on the fact that as number of trials 
increase, the models maintain the same pattern, and unless 
there is change in the pattern another model will not be 
selected. The two equations above represent each of the 
groups of models selected; results presented in table (1- 3) 
will be discussed. This will enable the determination of the 
effects of the factors (sample size and bootstrap level) on a 
real data set. Extreme values in the ranges stated above 
were truncated and special consideration was given to the 
plotting range and the layout. Even though very low 
estimates were also observed, results in these ranges are 
presented in order to demonstrate the  
trends and the performance at the lower ends of the 
distributions for each bootstrap model.  

Table 1 shows the conditional bias of the three tests 
for the bootstrap models when the from real data set, in 
fact, only the correlation between original values and 
restricted values were considered. Although the magnitude 
of bias varied across the bootstrap methods (or models), 
the pattern of relative effects of these factors was generally 
consistent within each bootstrap method (or model). It can 
be seen that sample size and test length of bootstrap level 
had large effects on bias of the SLR, group proficiency 
level had relatively small or mixed effects under some 
conditions bias was smaller for a larger sample size and a 
shorter test length. Given the same test length, a smaller 
ratio normally yielded slightly larger bias, especially for 
the parametric models with the smaller estimate, such as 
two and three. Although the effect of group proficiency 
level on bias of the SLR was quite small, it seemed there 
was an interaction effect between this factor and the 
bootstrap DGP method. For the nonparametric bootstrap 
DGP method, as the group differences became larger, the 
bias of the SLR became somewhat smaller; however, for 
the parametric methods with a longer test, the bias of the 
SLR became slightly larger as the groups were more 
different. There was no evidence showing any effect of the 
group proficiency level on the parametric method with a 
short test. 

The Tables are presented in the order of tests (1, 2, and 
3), sample sizes (200, 1000, and 10000), bootstrap levels 
(99, 499, and 1999), and group proficiency levels (1, 2, and 
3) of the bias, standard error and information criteria for a 
real data set. It can also be seen that, across different 
combinations of different test lengths of bootstrap levels 
group proficiency levels, and the sample size increased, the 
RMSE obtained from the two bootstrap models, PM and 
NPM increased at almost all estimated points, which is to 
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be expected because of the property of estimation bias. It 
can also be noted that although the bias at the two ends of 
the estimate was large (in absolute value), the curves from 
different bootstrap models were closer to one another when 
the sample size was 10000 than when the sample size was 
1000. Across all the conditions considered, model-PM 
yielded much larger bias than model-NPM at almost all the 
estimates.  

In Test 1, across the three different sample sizes and 
the three different group proficiency levels, the largest 
bias, standard error and RMSE estimate were always 
associated with model NPM 

Specifically, for group proficiency level 1, 2 & 3, the 
smallest RMSE was from model PM; while NPM has a 
small RMSE when the bootstrap levels and sample sizes 
are large. The same pattern existed for Test 1 in Tables (1 
– 3) in terms of the largest/smallest bias and standard error 
and the rank order of the different models, indicating that 
including or excluding 2% of the estimated values showed 
that they had little effect on estimating bias and standard 
error. 

VI. CONCLUSION  

From the tables, it is apparent that, under all bootstrap 
conditions, the parametric bootstrap functional models 
produced smaller bias, standard error and RMSE than the 
non-parametric bootstrap functional models especially 
when bootstrap level and sample size are large in simple 
linear equation (SLR).  

Finally, this study concludes that parametric bootstrap 
DGP method produces minimum error in comparison with 
the nonparametric bootstrap DGP method under several 
assessment conditions and also the kernel density estimates 
confirmed that external sector statistics in Nigerian has a 
chi-square distribution, according to [15]; since the 
bootstrap distribution created by resampling, also matches 
the properties of the sampling distribution. This study, 
therefore, is a stepping stone for further research and 
prediction in the economic sectors 
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