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Abstract—An empirical analysis of the mean return and 
conditional variance of Nigeria Stock Exchange (NSE) index 
is performed using various error innovations in GARCH 
models. Conventional GARCH model which assumed normal 
error term failed to capture volatility clustering, leptokurtosis 
and leverage effect as a result of zero skewness and kurtosis 
respectively. We re-modify error distributions of GARCH 
(p,q) model inference using some thick-tailed distributions. 
Method of Quasi – Maximum Likelihood Estimation (MLE) 
was used in parameter estimation. The robust model that 
explained the NSE index is determined by loglikelihood and 
model selection Criteria.  Our result shows that GARCH 
model with fat-tailed densities improves overall estimation for 
measuring conditional variance.  The GARCH model using 
Beta-Skewed-t distribution is the most successful for 
forecasting NSE index. 

Keywords: GARCH , Nigeria Stock Index , Maximum 
Lilkelihood Estimation (MLE) and Beta Skewed -t distributions. 

 

I. Introduction 

Volatility clustering and leptokurtosis are commonly 

observed in financial time series [1]. Another phenomenon 

often encountered is the so called leverage effect [9], 

which occurs when stocks prices change are negatively 

correlated with changes in volatility. Observation of this 

type in financial time series have led to the use of a wide 

range of varying variance models to estimate and predict 

volatility. In his seminar paper, Engle [4] proposed to 

model time-varying conditional variance with 

Autoregressive Conditional Heteroskedasticity (ARCH) 

processes using lagged disturbances; Empirical evidence 

based on his work showed that a high ARCH order is 

needed to capture the dynamic behaviour of conditional 

variance. The Generalized ARCH (GARCH) model of 

Bollerslev [1] fulfills this requirement as it is based on an 

infinite ARCH specification which reduces the number of 

estimated parameters from infinity to two.  

Both the ARCH and GARCH models capture 

volatility clustering and Leptokurtosis, but as their 

distribution is symmetric.Another problem encountered 

when using GARCH models is that they do not always 

fully embrace the thick tails property of high frequency 

financial times series. To overcome this drawback 

Bollerslev [1], Baille and Bollerslev [12] and Beine et al 

[13] have used the Student’s t- distribution. Similarly to 

capture skewness. Liu and Brorsen [14] used an 

asymmetric stable density. To model both skewness and 

kurtosis Fernandez and Steel [15] used the skewed 

Student’s t-distribution.Pagan and Schwert [16] and  

Lundo et al [17] carried out a comprehensive studied on 

forecasting conditional variance with asymmetric GARCH 

models. A comparison of normal density with non-normal 

ones was made by Baillie and Bollerslev[12], Lambert and 

Laurent [18], Jun Yu[19] and Siourounis [20]. 

The disadvantage of the normal GARCH (1,1) model 

is that the conditional excess kurtosis is zero,  and both 

unconditional and conditional skewness are zero, thus, 

volatility clustering , leverage effect  and leptokurtosis 

cannot be capture adequately. This work intends to re-

modify error distributions of GARCH ( p, q) model 

inference under violation of normality in favour of some 

thick-tailed distributions. A comparison between 

symmetric and asymmetric distributions was carried out 

using four different density functions. We investigate the 

forecasting performance of GARCH model together with 

different density functions: normal distribution, Student’s -

t distribution, Generalized Error distribution and 

Generalized Beta Skewed-t distribution. We forecast 

Nigeria Stock Exchange (NSE) index [5], we use several 
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standard performance measurements and our results 

suggest that one can improve overall estimation by using 

asymmetric GARCH model with fat-tailed densities for 

measuring conditional variance.  

This paper is structure as follows. Section II presents the 

data. In Section 3.0 to 3.3, we present Methodology of the 

GARCH models and estimation procedures used in the 

article. In Section 4.0, we present the results, tables and 

forecasting results.  

II. MATERIALS AND METHODS 

The data consist of 180 monthly observations of the NSE 
Stock Index [5] from period January 2000 to December 
2015  which was obtained from statistical  Central Bank of 
Nigeria  Bulletins 2016. To estimate and forecast this 
index, we use GARCHFIT in  R package. Initially the 
assets prices are transformed into log return series,    
�� given by 

�� = log �� − log ���� = ���
��

����
= ��� �1 +

�������

����
�    (1) 

where  Yt is All Share Index (ASI) for day t.In this section 
we review the different ARCH models used in the paper,  
let��be a time series of assest returns whose mean equation 
is  
�� = �� + ∑ ��

�
��� ���� +  ��   (2) 

where ����    �s the information available at t-i and �� are 
the random innovations which follows Normal , Student-t , 
GED and newly proposed Generalized Beta Skew –t 
Distributions.  

To explain the conditional Heteroskedasticity 
dynamic, Engle [4] proposed the Autoregressive 
Conditional Heteroskedasticity (ARCH) model that 
estimate the variance of returns as a simple quadratic 
functions of the lagged values of the innovations: 

                          ��
� = �� + ∑ ��

�
��� є���

�   (3) 

where є� = �� ��  and ��  is an iid variable with mean 
zero and variance  one. 
One weakness of ARCH model is that it often requires 
many parameters and a high order of q to capture the 
volatility process. Bollerslev [1] propose a Generalized 
ARCH model based on an infinite ARCH Specification 
that enable us to reduce the number of estimated 
parameters by imposing restrictions. The standard GARCH 

(p,q) model express the variance at time t,  ��
�as  

 
��
� = �� + ∑ ��

�
��� ����

� +∑ ��
�
��� ����

�   
 (4)  

where �� > 0 ,�� ≥ 0 (for i= 1,− − −,q),�� ≥ 0(for 
j=1, …, p) ,is sufficient for conditional variance to be 
positive. Where 
��(�)= ∑ ��

�
��� ��and  ��(�)=   ∑ ��

�
��� �� 

If all the roots of the polynomial  equal to zero lies outside 
the unit circle, we have 
��
� =  ��[1 − �(�)]�� +  �(�)[1 − �(�)]����

�(5) 
We also consider GARCH (1,1) model as the variant 
model ,which is  
��
� = �� + ������

� +������
�       (6) 

 
The generalized beta distribution of the first kind was 
introduced by McDonald [6], with link function  

�(�)= 
�

�(�.�)
[�(�)����(1 − (�(�)�)���]f(y) (7) 

       
where �(�)= ��(�,�,�)  is an incomplete beta function and 
f(y) is the probability function of student-t.  A random 
variable y is said to be a Generalized Beta Skewed –t 
distribution if�(��:�,�,�)= 
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Considering mean equation as AR (1)  model and variance 
equation as GARCH (1,1) model then the log likelihood 
when the error term follows  generalized beta Skew t  
distribution;   
� = ����− �[����(�)+ ����(�)− ����(� + �)]
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� + 1
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Differentiate�(�)and equate to zero with rest to 
��= (�,�,�,��,��,∅�)  , let i= prime in equation 11 and 
12, 

we have 
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Other Existing functional distributions considered in the 
literature are  Normal, Student-t and GED Innovation [3] 
[10] . The log- likelihood from normal distribution is 
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where��  = ��is the GARCH time series 

innovations and n is the sample size of the time series. For 
Student t-distribution, we have 
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Where v is the degree of freedom to be estimated and Γis 
the gamma function.  For GED, it is 
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where v is the tail thickness parameter. The log-likelihood 
functions in the 10, 18, 19 and 20 are simplified using R 
code. 

I. ANALYSIS 
To obtain a stationary series, we use the returns 

�� = 100(log (��)− log (����))where tY is the closing 

value of index at month t.  The sample statistics for the 

returns tR  are exhibited in table 1. For NSE index (sample 

January 2000 to December 2015), the skewness is 
negatively skewed and also exist negative kurtosis which 
indicate anomalous distribution. Shapiro-Wilk test indicate 

non-normality. While Figure 1 is the time plot pointing 
toward non-stationary series and Figures 2 and 3 are the   
Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF) which pointed towards 
AR(1) model for the data. 

II. RESULTS 

Table 1:Descriptive statistics for Returns 
INDEX 
NSE 

MIN MEDIAN MEAN 
1.00 96.50 96.40 

MAX SKEWNESS KURTOSIS SHAPIRO-WILK 
TEST 

191.00 -0.00763 -1.2260 0.9538 

 

 
Figure 1: Time plot of the Series 

 
Figure 2: Autocorrelation function of Returns                                              

. 

 
Figure 3: Partial Autocorrelation Function of Returns 

III. DISCUSSIONS 

A. Choosing Volatility Model 

The basic estimation model consist of two equations, one 
for the mean which is a simple autoregressive AR(1) 
model and another for the variance which is identified by a 
particular ARCH specification i.e. GARCH (1,1). For NSI, 
the models are estimated using R code by the approximate 
quasi- maximum likelihood estimator assuming normal, 
student t, GED and Generalized Beta Skewed-t as 
innovations. To compare the different densities with model 
we apply the Akaike Information Criterion (AIC) and  log 
likelihood values. When we analyze the densities we find 
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that beta skewed-t distribution clearly out performed the 
normal distribution. Indeed the log likelihood function 
increases when using beta skewed-t distribution, leading to 
AIC criteria of 10.002 and 10.413  for normal density. 
 

Table II: Table of results of model selection criteria  
between the existing and new proposed innovations. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Forecasting 

The forecasting we obtain are evaluated using Root Mean 

Square Error (RMSE) and Mean Absolute Percentage 

Error (MAPE) predicting 24 steps ahead. The forecasting 

is reported by ranking the different models with respect to 

RMSE and MAPE for NSE index, the result support the 

asymmetric GARCH than the symmetric GARCH model 

The Generalized beta skewed-t- GARCH(1,1) is the most 
successfully in forecasting NSE conditional variance. 

II. CONCLUSION  

The Model performance of GARCH (1,1) model  was 
compared using different distributions for Nigeria Stock 
Index returns. We found that the new proposed  
GARCH(1,1) – Beta Skewed-t model is the most 
promising for characterizing the dynamic behaviour of 
these returns as it reflects their underlying process in terms 
of serial correlation, asymmetric volatility clustering and 
anomalous innovation. We recommend that researchers, 
Portfolio users  consider GARCH (1,1) – Beta Skewed-t 
model in modeling  Nigeria Stocks Market  as it has 
proven better to the convectional ones. 
 
 
 
 
Table III: Forecasting Analysis  for the NSE Index: 
Comparing between densities 
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