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Abstract—Health researchers all over the world are often 
concerned with rare or infrequently occurring, repeatable, 
health-related events such as number of auto accidents, twins, 
caesarean sections and so on. Cases of the occurrence of such 
discrete events take the form of non-negative integer or count 
data. Because the counts of rare events tend to be non-
normally distributed and highly positively skewed, the use of 
ordinary least squares (OLS) regression with non-transformed 
data has many lapses. The Poisson regression is an appropriate 
alternative for analyzing these data. This research is focused at 
analyzing dataset on low birth weight with the aim of 
obtaining: summary statistics, a well fitted model, and 
deviance goodness of fit. The result obtained shows that low 
birth weight is highest in the year 2016, also number of births 

makes the smallest contribution ( 0.0206 ). We conclude 

that the model fits reasonably well because the goodness-of-fit 
chi-squared test is not statistically significant with p-value of 
0.8323 at 95% confidence interval. 
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I. Introduction 

A great deal of the data collected by scientists, medical 
statisticians and economists, however, is in the form of 
counts (whole numbers or integers). The number of 
individuals that died, the number of firms going bankrupt, 
the number of days of frost, the number of red blood cells 
on a microscope slide, or the number of craters in a sector of 
lunar landscape are all potentially interesting variables for 
study. With count data, the number 0 often appears as a 
value of the response variable. 

The first application of Poisson regression was given by 
[4] with wireworm counts from an agriculture experiment as 
the response variable and the regression function E(yi) = μi 
= (xi β)2 , where xi is the ith row of the model matrix for a 

Latin square design. This model is a GLM with a Poisson 
response and a “square root” link function [6] for additional 
details. [7] proposed Poisson regression with a linear rate 
function for use in consumer demand analyses and 
reliability. [10] described GLM for response variables in the 
regular exponential family, also [9] for Poisson log-linear 
models. [6] described Poisson regression methods for 
general models with an emphasis on intrinsically nonlinear 
models. [6] described the analysis of event rates for Poisson 
data and [5] considered applications of these methods in 
epidemiologic follow-up studies. [2] described the use of 
Poisson regression in occupational cohort studies and [7] 
gave a more complete review of Poisson regression methods 
and areas of applications. [3] discussed Poisson regression 
in econometric applications. [12] reviewed the use of 
Poisson regression in occupational and environmental 
cohort studies and considered problems that may occur 
when person-time and events are tabulated by levels of an 
exposure variable that was originally measured on a 
continuous scale and has been categorized for analysis. 

Straightforward linear regression methods (constant 
variance, normal errors) are not appropriate for count data 
for five main reasons: 

i. the linear model might lead to the prediction of 
negative counts  

ii. the variance of the response variable is likely to 
increase with the mean  

iii. the errors will not be normally distributed  
iv. zeros are difficult to handle in transformations  
v. some distributions (e.g. log-normal or gamma) 

don’t allow zeros  

II. RESEARCH METHODOLOGY 

2.1 The Poisson distribution 
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The Poisson distribution is widely used for the description 
of count data that refer to cases where we know how many 
times something happened (e.g. lightning strikes, bomb 
hits), but we have no way of knowing how many times it 
did not happen. This is in contrast to the binomial 
distribution where we know how many times something did 
not happen as well as how often it did happen (e.g. if we got 
6 heads out of 10 tosses of a coin, we must have got 4 tails).  

In the case of binary regression the fact that probability 
lies between 0-1 imposes a constraint. The normality 
assumption of multiple linear regression is lost, and so also 
is the assumption of constant variance. Without these 
assumptions the F and t tests have no basis. The solution 
was to use the logistic transformation of the probability p or 
logit p, such that  

 
log

e
(p/1− p) = β

0 
+ β

1
Χ

1 
+ β

2
Χ

2
…….β

n
Χ

n. 
 

The β coefficients could now be interpreted as increasing or 
decreasing the log odds of an event, and expβ (the odds 
multiplier) could be used as the odds ratio for a unit increase 
or decrease in the explanatory variable. In survival analysis 
we used the natural logarithm of the hazard ratio, that is  
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When the response variable is in the form of a count we face 
a yet different constraint. Counts are all positive integers 
and for rare events the Poisson distribution (rather than the 
Normal) is more appropriate since the Poisson mean > 0. So 
the logarithm of the response variable is linked to a linear 
function of explanatory variables such that log
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In other words, the typical Poisson regression model 
expresses the log outcome rate as a linear function of a set 
of predictors. The Poisson is a 1-parameter distribution, 
specified entirely by the mean. The variance is identical to 
the mean, so the variance/mean ratio is equal to one. In this 
paper we are studying the number of low birth weight 
babies (LBW) per month in a Teaching Hospital, and our 
data consist of the numbers of LBW babies per month (x). 
Some months have no LBW babies at all, but some may 
have as many as 5 or 6 cases. If the mean number of LBW 
babies per month is λ, then the probability of observing x 
LBW babies per month is given by: 
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This means that if we start with the zero term 
 eP )0( …………………………………(3) 

then each successive probability is obtained simply by 
multiplying by the mean and dividing by x. Log link 
function when Poisson errors are specified  

)exp( ii xy  ……………………………… (4) 

2.2 Overdispersion in Poisson 
Overdispersion is often encountered when fitting very 
simple parametric models, such as those based on the 
Poisson distribution. The Poisson distribution has one free 
parameter and does not allow for the variance to be adjusted 
independently of the mean. The choice of a distribution 
from the Poisson family is often dictated by the nature of the 
empirical data. If overdispersion is a feature in Poisson 
regression, an alternative model with additional free 
parameters may provide a better fit. In the case of count 
data, a Poisson mixture model like the negative binomial 
distribution can be proposed instead, in which the mean of 
the Poisson distribution can itself be thought of as a random 
variable drawn – in this case – from the gamma distribution 
thereby introducing an additional free parameter, the 
resulting negative binomial distribution is completely 
characterized by two parameters. Overdispersion can be 
detected if residual deviance is much larger than the residual 
degrees of freedom. 

Selection criteria: According to [1] Akaike information 
criterion  (AIC) is defined as: 

kLAIC 2ln2   

 where lnL is the maximized log-likelihood of the model and 
k is the number of parameters estimated. Some authors 
define the AIC as the expression above divided by the 
sample size. 
    Bayesian information criterion (BIC) [13] is another    
measure of fit defined as: 

NkLBIC lnln2   
where N is the sample size. 
 
2.3 Deviance with Poisson errors 
Up to this point, lack of fit has always been measured by 
SSE; the residual or error sum of squares 

 2
ˆ  yySSE ………………………..(5) 

where ŷ   are the fitted values estimated by the model. With 

Generalized Linear models SSE is only the maximum 
likelihood estimate of lack of fit when the model has normal 
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errors and the identity link. Generally, we use deviance to 
measure lack of fit in a Generalized Linear model.  
For Poisson errors the deviance is: 

 









E

O
O ln2  deviancePoisson …………(6) 

where O is the Observed count, and E is the Expected count 
as predicted by the current model. 

III. ANALYSIS 

 
Table 1: Number of LBW by various maternal attributes 

Month Factor  MAB 
Unbook 
mothers 

Birth LBW 

Sep, 2014 A 31 0 3 4 

Oct, 2014 A 31 15 31 5 

Nov, 2014 A 32 2 14 1 

Feb, 2015 B 29 3 16 2 

Mar, 2015 B 31 7 27 4 

Apr, 2015 B 32 9 38 5 

May, 2015 B 31 5 14 6 

Jun, 2015 B 29 1 9 1 

Jul, 2015 B 33 1 3 0 

Sep, 2015 B 29 0 3 0 

Oct, 2015 B 32 5 25 0 

Nov, 2015 B 31 4 24 6 

Dec, 2015 B 31 5 27 4 

Jan, 2016 C 31 6 27 4 

Feb, 2016 C 32 9 31 10 

Mar, 2016 C 31 6 33 8 

Apr, 2016 C 32 5 19 4 

Jun, 2016 C 32 3 30 5 

Jul, 2016 C 31 4 31 5 

 
MAB is the mean age of the mothers and LBW the number 
of low birth weight babies. 

IV. RESULTS 

From Table 1, it can be seen that year 2014 has 10 counts, 
year 2015, has 28 counts, while year 2016 has 36 counts. 
The total deviance (like sum of square total SST) is based 
on the whole sample of 19 numbers. The expected count is 
the overall mean which is 3.89. The total deviance can then 
be calculated thus using equation (6)    
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                = 43.7036 

Now the three years means are 
3

10 ,
9

28 and 
6

36

respectively. The residual deviance after fitting a 3–level 
factor for year should therefore be 
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              = 28.2823 

Fig 1: Boxplot showing the median of LBW in the factor 

levels 

Table 2: Poisson estimates 

Coefficients:    Estimate Std. Error z value Pr(>|z|) 
(Intercept)      1.20102    4.62038   0.260    0.795 
FactorsB        -0.02628    0.45831  -0.057    0.954 
FactorsC         0.49452    0.49710   0.995    0.320 
MAB             -0.02907    0.15018  -0.194    0.847 
Unbooked         0.05366    0.05489   0.978    0.328 
No_of_births     0.02467    0.02212   1.115    0.265 

 
Test for overdispersion 
 
    Null deviance: 43.702  on 18  
degrees of freedom 
Residual deviance: 24.759  on 13  
degrees of freedom 
              AIC: 89.034 
For model 1: The response variable, number of low birth 

weight (lbw) is regressed on one of the explanatory 

variables (mean age of mothers); then add other explanatory 

variables in the regression analysis 
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Table 2: Analysis of Deviance for model 1 

  df deviance 
mean 

deviance 
deviance 

ratio 
AIC 

Regression 1 1.5355 1.5355 1.54 5.1811 

Residual 17 42.1666 2.4804 

Total 18 43.7022       

 
Table 3: Estimates of regression coefficients  

  Estimates s.e z 

Constant -2.9927 3.5907 -0.83 

Mean age of mothers 0.1395 0.1148 1.22 
 
The regression equation may now be written as: 
Log

e
(Y) = β

0 
+ β

1
X

1   

On substituting the values of Y and X, the equation can be 
written as: 
Log

e
(LBW) = -2.9927 + 0.1395 MAB 

Which leads to LBW = (e) 
-2.9927

x (e) 
0.1395 

MAB 
Table 4: Analysis of Deviance for model 2 

  df deviance 
mean 

deviance 
deviance 

ratio AIC 

Regression 2 7.0691 3.5345 3.54 4.9952 

Residual 16 36.6331 2.2895 

Total 18 43.7022       

 
Table 5: Estimates of regression coefficients 

  estimates s.e z 

Constant -2.7324  3.5907 -0.75 

Mean age of mothers 0.1008 0.1148 0.85 

year 0.4194 0.1826 2.30 

 

Table 6: Analysis of Deviance for model 3 

  df deviance 
mean 
deviance AIC 

Regression 3 17.0977 5.6992 4.5726 

Residual 15 26.6045                    1.7736 

Total 18 43.7022     

Table 7: Estimates of regression coefficients 

estimates s.e z 

Constant -0.4544 4.2567 -0.11 

Mean age of mothers 0.0032 0.1412 0.02 

year 0.4902 0.1848 2.65 

Unbooked mothers 0.1119 0.0347 3.22 

Table 8: Analysis of Deviance for model 4 

  df deviance 
mean 

deviance 
deviance 

ratio AIC 

Regression 4 18.0486 4.5122 4.5122 4.6278 

Residual 14 25.6536                    1.8324 

Total 18 43.7022       
 

Table 9: Estimates of regression coefficients 

  estimates s.e z 

Constant 0.0520    4.4370     0.01    

MAB 0.1470     -0.0900    0.93     

year 0.2243      1.6400    0.10     

Unbooked 0.0740    0.0526     1.41    

number of births 0.0206 0.0213 0.97    

 

This is the full model for which the regression equation may 
be written as: 

443322110)log( XXXXY    

On substituting the values we have  
LBW in 2014   
       = 1.0537 x 1.1526 x 1.0768 x 1.0208 = 1.3275 
LBW in 2015   
= 1.0537 x 1.1526 x 2.1536 x 1.0208= 2.6699 
LBW in 2016   
= 1.0537 x 1.1526 x 3.2304 x 1.0208= 4.0049 
 
Table 10: Measures of Fit for Poisson of low birth weight 
 

Model 
current 
Poisson 

saved 
Poisson Difference 

 

N 19 19 0.00 

logLik intercept only -46.857 -46.857 0.00 

Log-Lik Full Model -31.301 -31.293 -0.009 

D 62.603 62.586 0.017 

LR: 31.11 31.127 -0.017 

Prob> LR:                     0.00 0.00 0.00 

Max. Likelihood R2 0.806 0.806 0.00 

Cragg & Uhler's R2:            0.811 0.812 0.00 

AIC: 3.926 4.031 -0.104 

BIC': -19.332 -16.405 -2.927 

 
Difference of 2.927 in BIC' provides positive support for 
current model where saved Poisson is the full model, while 
current Poisson is without number of births. Since the effect 
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of number of birth in the model is low, it is therefore 
removed in order to increase the precision power of the fit. 
 

Table 11: Summary statistics of the variables 

Year LBW 
Mean age 
of mothers 

Unbooked 
mothers Births 

2014 *0.3333 31.3333 2.0 10.3333 

**0.5774 2.0816 2.6457 12.7017 

2015 3.2 31 5.6 21.5 

1.5491 1.1547 4.5509 11.0780 

2016 6.6666 31.1667 4.6666 26.5 

1.9663 0.4082 1.2110 6.8920 

Total 3.8421 31.1052 4.7368 21.3157 

  2.6928 1.1002 3.6338 11.0254 
 

where * represents the mean and ** is the standard 

deviation . 

The deviance goodness of fit test 
The null hypothesis is that our model is correctly specified, 
and we have strong evidence to reject that hypothesis. So we 
have strong evidence that our model fits badly. 
 
Deviance goodness-of-fit    = 8.9800 
Prob>chi2(13)          =  0.8323 

V. DISCUSSIONS AND CONCLUSION 

We conclude that the model fits reasonably well because the 
goodness-of-fit chi-squared test is not statistically 
significant. If the test had been statistically significant, it 
would indicate that the data do not fit the model well. In that 
situation, we may try to determine if there are omitted 
predictor variables, if our linearity assumption holds and if 
there is an issue of over-dispersion. 

II. DISCUSSIONS AND CONCLUSION 

Poisson regression is appropriate when the dependent 
variable is a count. The event is independent in the sense 
that the occurrence of one will not make another more or 
less likely, but the probability per unit time of events is 
understood to be related to covariates such as time of day. 
We conclude that the model fits reasonably well because the 
goodness-of-fit chi-squared test is not statistically 
significant. If the test had been statistically significant, it 
would indicate that the data do not fit the model well. In that 
situation, we may try to determine if there are omitted 
predictor variables, if our linearity assumption holds and if 
there is an issue of over-dispersion. 
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