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Abstract — This paper demonstrates the use of the 
multivariate statistical technique of principal 
component analysis in determining the underlying 
structures of measurements taken by tailors to sew a 
pair of trousers. Interestingly, the measurements can be 
presented adequately in three dimensions because we 
obtained only three principal components. The first 
dimensions show that waist, length, lap, knee, and flap 
are significant for sewing a pair of trousers. The second 
dimension shows that four measurements (length, lap, 
flap, and base) could be taken together during trouser 
production and the third dimension suggests the use of 
four measurements (waist, length, knee, base) in sewing 
a pair of trousers. 

Keywords - Zero-Inflated Poison Model, under-five children; 
spatial analysis; nonlinear effect; treated nets, South-West 
Nigeria. 

 
 

I. Introduction 

In a contemporary society people are often judged based 
on the type of clothes they wear. It may be noted that one’s 
appearance in clothes often creates a picture of his or her 
socio-economic status.  Thus, the way garments fits one’s 
body becomes an important factor in selection of clothes. It 
is obvious that a garment made of the best fabric cannot 
give the appearance of quality if it gives an individual poor 
fit.  In fact, improperly fit garments do not appear 
attractive and cannot give an individual a feeling of 
physical comfort. Although, fit is a matter of choice, for 
instance, some people prefer ample ease garments while 

others feel more comfortable in body-fitted garments, it is 
necessary for a garment to fit an individual very well. 

It is essential to note that humans come in varieties of 
shapes, sizes and proportions. The body characteristic is 
heavily relied on while making choices of clothes. Of 
course, there is no perfect body type that determines the 
size and style of clothes an individual can wear. Moreover, 
a good idea of one’s shape may be determined by 
measuring the circumference of the waist, hip and chest. 
Height is also an important factor because two different 
people having the same height may entirely have different 
proportions. For instance, there are people with long arms 
and legs while others have long-waist. These body 
characteristics make a big difference in the kinds of style 
that fit an individual.  

To achieve the ultimate goal of garment-fits, tailors 
take several body measurements before sewing clothes. 
These measurements generally are expected contribute to 
the outlook of the clothes.  It worrisome that even after all 
these measurements have been taken, some of the 
constructed garments appear to fit individuals very poorly.  

The aim of this paper is to analyze several 
measurements taken to sew a pair of trousers in order to 
determine whether the total variation in the measurements 
could be explained by a fewer constructs. The essence of 
such analysis is to guide tailors with the basic (principal) 
measurements to be taken during the course of trouser-
making so as to reduce the variation that exist in the actual 
output of trousers. Most importantly, this work will benefit 
industrial trouser tailors who mass-produce trousers for 
people they do not have their actual measurements.  
Further, individuals who are opportune to read this paper 
would benefit from the work in the sense that it reveals to 
them the basic measurements they could give to tailors to 



Professional Statisticians Society of Nigeria 
                                         Edited Proceedings of 4th International Conference                                           Vol. 4, 2020 

689 

 

 
© 2020, A Publication of Professional Statisticians Society of Nigeria 

 

sew trousers for them even when they are not physically 
available for such measurements. The paper is unfolded as 
follows: Section 2 deals with methodology. Section 3 
presents results and discussion. The paper is concluded in 
Section 4.   
 

II. Methodology 

Six measurements trouser measurements (Waist, Length, 
Lap, Knee, Flap, Base) taken on 100 individuals were 

collected from 10 tailors at Psychiatric Tailoring Center, 
Aba.  The data were analyzed using Principal Component 
Analysis (PCA). 
2.1 The Principal Component Analysis (PCA) 
According to Johnson and Wichern (2007), a Principal 
Component Analysis (PCA) starts with data on p

correlated variables  1 2, ,..., pX X X on n  individuals as 

shown in Table 1. 
. 

Table 1: The data layout for Principal Component Analysis (PCA) 
 

Individual  i  

Variable Measurement 
1 2   p 

1 
11X  12X    

1 pX  

2 
21X  22X    

2 pX  

          
n  

1pX  2pX    
ppX  

 
 
As orchestrated by Onyeagu (2003), since variables may 
not always be measured on the same scale, the first step in 
PCA is to transform the original variables 

 1 2, ,..., pX X X  into standard scores using the relation  

ij j
ij

j

X X
Z

S


   (1) 

where ijX is the thj  variable measured on the thi  

individual, ijZ is the standard score of the thj  variable 

measured on thi  individual on the thj  variable, jX  is 

the mean of the thj variable measured  on the thi  

individual and jS   is the standard deviation of the thj

variable measured  on the thi  individual. 

Notably, the values of jX  and jS  are respectively 

calculated using the relations: 

1

1
, 1, 2,...,

n

j ij
i

X X j p
n 

    (2) 

and  

 
1

1
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1

n

j ij j
i

S X X j p
n 

  
    (3) 

Next, the correlation matrix  R of the variables is 

calculated from the standard scores by calculating the sum 

of squares and cross products. The result gives an n p  

symmetric matrix of intercorrelations among the p
variables with unity along the main diagonal of the 
correlation matrix. Consequently,   
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 (4) 

An alternative means of obtaining the correlation matrix is 
to first obtain the covariance matrix 
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(5) 

and then determine the elements of (4) from the elements 
of (5) using the relation 

ij ij
ij

i jii jj

s s
r

s ss s
    (6) 
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where 
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It may be noted that the correlation matrix shows how each 
of the variables is associated with each other. A high 
correlation indicates that two variables are associated and 
will be probably grouped together by the principal 
component analysis. Variables with low correlations 
usually will not have high loadings on the same 
component. Essentially, the test of hypothesis is performed 
to determine the significance or otherwise of the 
correlations.  
The next task is to determine the eigenvalues 

 1 2, ,..., p   and corresponding eigenvectors 

 1 2, ,..., pa a a of the correlation matrix  R . The 

eigenvalues of  R  are obtained by finding the roots of 

the characteristic equation 

0R I    (7) 

where I  is a p p identity matrix and   is an 

eigenvalue of  the correlation matrix 
 

Similarly, the eigenvectors corresponding to  is obtained 
by solving the equation 

  0R I a    (8) 

where a is an eigenvector corresponding to the eigenvalue 

  of  R . The eigenvector of a  

Further, we use obtain the normalizing eigenvector of  R  

by solving the orthogonal condition 
1 1a a     (9) 

In view of (7), (8) and (9) respectively, the model for the 
PCA is formulated as follows 

1 11 1 12 2 1

2 21 1 22 2 2

1 1 2 2

p p

p p

p p p pp p

Y a X a X a X

Y a X a X a X

Y a X a X a X

   

   

   





   



(10) 

where 1 2, ,..., pY Y Y are the first, second,…, thp principal 

components, written as the linear combinations of the 

original  variables 1 2, ,..., pX X X  and  1 2, ,j j jpa a a  

are the elements of the corresponding normalized 
eigenvectors.  

2.2 Criteria for the number of components to be 
extracted 

Once we have obtained the principal components, there is 
need to decide how many components to retain. One of the 
celebrated devices for extracting principal components is 
the scree plot. The scree plot is a plot of the eigenvalues 

, 1, 2,...,j j p   against all the components j , when the 

eigenvalues are ordered from the largest to the smallest. 
From the scree plot, we look for an elbow (bend). The 
number of components is taken to be the point at which the 
remaining eigenvalues are relatively small and about the 
same size (Johnson and Wichern, 2007).  

Another rule of thumb is to retain components whose 

eigenvalues , 1, 2,...,j j p   are greater than unity, or 

equivalently, only those components which, individually, 

explain at least a proportion 1 p of the total variance in 

the dataset.  Also, we can retain all components that 
combine to account for at least 70% of the total variation in 
the original data.  

To compute the proportion of variance in the original data 
explained by the jth principal component, the following 

formula is utilized: 

1

j
j p

j
j

p








 (11) 

2.3 Criteria for the significance of component loadings 
Component loading represents the correlation between an 
original variable and its component. To decide which 
component loadings are worth considering, one is required 
to adopt a rule of thumb, which suggests that component 
loadings greater 0.30 should be considered significant; 
loadings of 0.40 are considered more important; and if the 
loadings are 0.50 or greater, they are considered very 
significant , provided the sample size is 50 or larger (Hair 
Jr., 1992).   
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III. Results And Discussion 

3.1 Main Results 

3.1.1 Mean vector, covariance matrix and correlation 
matrix of the trouser measurements 

The variables used for this study are defined as follows: 

 1X :  Waist measurement 

 2X : Length measurement 

 3X : Lap measurement 

 4X : Knee measurement 

 5X : Flap measurement 

 6X  : Base measurement 

Applying (2) to the research data, one obtains the 
following mean vector 

 

 32.672 40.920  26.530 19.610 10.940 18.320TX 
 
Using (4) and (5) on the research data, one obtains the 
covariance and correlation matrix displayed as follows: 

6.226139 4.257918 1.740653 0.638857 0.457469 0.460163

4.257918 22.513878 4.323878 0.585510 0.505306 0.193265 

1.740653 4.323878 5.045000 0.491531 0.160000 0.020816

0.638857 0.585510 0.491531 0.574388 0.180204 0.147755

0.

 



S

457469 0.505306 0.160000 0.180204 0.363673 0.147143

0.460163 0.193265  0.020816 0.147755  0.147143 0.579184

 
 
 
 
 
 
 
  
 

 

  
 

 

1.000 0.360 0.311 0.338 0.304

0.360 1.000 0.406 0.163 0.177

0.311 0.406 1.000 0.289  0.118 0.012

0.338 0.163 0.289 1.0

0

0.242

00 0.394

0.304 0.177 0.118 0.394 1.0 0 0.

0.054

0.256

0.242 0.054  0.256 

321

0.012 0.321 1.0 00






 









R











 

 

3.1.2    Hypothesis test on the correlation between the  trouser measurements 

The pairwise correlations and their corresponding p-values are presented in Table 2. 
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Table 2: Test of significance of the correlation between two variables 

S/No. Pair of variables   

 ,i jX X  
Correlation between variable   ijr  P-value Remarks 

0.05 level 

1  1 2,X X  0.360 
 

0.010 
 

Not Significant 

2  1 3,X X  0.311 0.028 Not Significant 

3  1 4,X X  0.338 0.016 Not Significant 

4  1 5,X X  0.304 0.032 Not Significant 

5  1 6,X X  0.242 0.090 Significant 

6  2 3,X X  0.406 0.003 Not Significant 

7  2 4,X X  0.163 0.259 Significant 

8  2 5,X X  0.177 0.220 Significant 

9  2 6,X X  -0.054 0.712 Significant 

10  3 4,X X  0.289 0.042 Not Significant 

11  3 5,X X  0.118 0.414 Significant 

12  3 6,X X  0.012 0.933 Significant 

13  4 5,X X  0.394 0.005 
 

Not Significant 

14  4 6,X X  0.256 0.073 Significant 

15  5 6,X X  0.321 
 

0.02 
 

Not Significant 

 
 
3.1.3 Estimates of eigenvalues of the correlation matrix 

Table 3: Results for the Extraction of Components 

Components Eigenvalues Percentage of Variance Cumulative Percentage of 
Variance 

1 2.2538 37.6 37.6 
2 1.2818 21.4 58.9 
3 0.7166 11.9 70.9 
4 0.6858 11.4 82.3 
5 0.5800 9.7 92.0 
6 0.4819 8.0 100.0 
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Figure 1 gives the plot of the eigenvalues against the number of components.  
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Figure 1: Scree test for Component Analysis 

 
Table 4: Component loadings of the 6 variables 

Variables  Components  
1 2 3 

1X  0.486 0.061 -0.472 

2X  0.373 0.524 -0.329 

3X  0.390 0.458 0.294 

4X  0.461 -0.186 0.659 

5X  0.425 -0.351 0.093 

6X  0.284 -0.595 -0.372 

 
 

IV. Discussion of results 

Inspection of the correlation matrix and results of Table 1 
reveals that 7 of the 15 correlations are significant at the 
0.05 level (while 13 of the 15 correlations are significant at 
0.01 level). But it is difficult to derive a complete and clear 
understanding of the relationships among the variables.  

 
Table 6.4 contains the information regarding the six 
possible components and their relative explanatory powers 
as expressed by their eigenvalues. If we apply the 
eigenvalue criterion, then two components will be retained. 
The scree plot (Figure 1), however, indicates that three 
components may be appropriate. In viewing the third 
component, its low value (0.7166) relative to the 
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eigenvalue criterion of 1.0 precluded its inclusion. Since its 
eigenvalue is quite high and could be rounded up to 1.0, 
then we include the third component as well. Still the three 
components retained represent 70.9 percent of the variance 
of the six variables under study. Thus, most of the data 
structure can be captured in two or three underlying 
dimensions. The remaining principal components account 
for a very small proportion of the variability and are 
probably unimportant. 

 
From Table 6.4, we notice that the first principal 
component has variance (eigenvalue) of  2.2538 and 
accounts for 37.6% of the total variance. The coefficients 
listed under PC1 show how to calculate the principal 
component scores: 
 

1 1 2 3 4 5 60.486 0.373 0.390 0.461 0.425 0.284Y X X X X X X       

 

It should be noted that the interpretation of the 
principal components is subjective; however, obvious 
patterns emerge quite often. For instance, one could think 
of the first principal component as representing an overall 
basic trouser measurement, because the coefficients of 
these terms have the same sign. It is obvious that all 
loadings are significant except the loading for variable six 
(base measurement). 

Similarly from Table 4, it is observed that the second 
principal component has variance of 1.2818 and accounts 
for 21.4% of the data variability. The second principal 
component is calculated from the original data using the 
coefficients listed under PC2 and we obtain: 

2 1 2 3 4 5 60.061 0.524 0.458 0.186 0.351 0.595Y X X X X X X       

This component could be thought of as contrasting 
waist measurement, Length measurement and Lap 
measurement with Knee measurement, Flap measurement 
and Base measurement to some extent. For component 2, 
only four loadings are significant. 

Finally from Table 4, it is observed that the third principal 
component has variance of 0.7166 and accounts for 11.9% 
of the data variability. It is calculated from the original 
data using the coefficients listed under PC3: 

3 1 2 3 4 5 60.472 0.329 0.294 0.659 0.093 0.372Y X X X X X X        

Component 3 shows that waist, length and base 
measurements can be grouped together while lap, knee and 
flap measurements should be taken together during the 
course of trouser production. Obviously, four loadings in 
component 3 are significant. 

V. Conclusion 

In this paper, we have demonstrated the use of the 
multivariate statistical technique of principal component 
analysis in determining the underlying structures of 
measurements taken by tailors to sew a pair of trousers. 
Interestingly, the measurements can be presented 
adequately in three dimensions because we obtained only 
three principal components. The first dimensions shows 
that waist, length, lap, knee, and flap are significant for 
sewing a pair of trousers. The second dimension shows that 
four measurements (length, lap, flap and base) could be 

taken together during trouser production and the third 
dimension suggests the use of four measurements (waist, 
length, knee, base) in sewing a pair of trousers.  
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