
Professional Statisticians Society of Nigeria 
                                         Edited Proceedings of 4th International Conference                                           Vol. 4, 2020 

646 

 

 
© 2020, A Publication of Professional Statisticians Society of Nigeria 

 

On the Predictive Ability of Time-Domain       
Modeling of Long Memory Data 

N. O. Adeboye1; O. N. Ogunnusi 

Department of Mathematics & Statistics, 
 Federal Polytechnic, Ilaro, Nigeria. 

E-mail: nureni.adeboye@federalpolyilaro.edu.ng1 

 
 

Abstract — The study of long memory data required the 
fitting of an appropriate time-domain model(s) which 
can be used to achieve a high level of precision in the 
forecast. To this end, Autoregressive Fractional 
Integrated Moving Average (ARFIMA) and Seasonal 
Autoregressive Integrated Moving Average (SARIMA) 
models were considered with special focus on the 
comparative predictive ability of the two techniques, 
using the Nigerian Stock Exchange All-share Index 
(ASI) as a study. The ASI series was subjected to a Unit 
Root test using Augmented Dickey-Fuller (ADF) 
approach and cross-examination of the ACF showed 
the presence of a long memory structure, which was 
confirmed using the Hurst exponent test. The Geweke 
and Porter-Hudak (GPH) method of estimation was 
used to obtain the long memory parameter of the 
ARFIMA model while the SARIMA model was also 
fitted for the ASI. However, based on minimum AIC 
and Maximum log-likelihoods, ARFIMA(4,0.204,1) and 
SARIMA (4,1,1)x(1,1,1)12 were found to be the best 
from several iterated models. Forecast evaluations of 
the best-fitted models were carried out using MAE, 
RMSE, and MAPE respectively. Results indicated that 
the SARIMA model was much better in prediction as 
against most established literature of ARFIMA’s 
superiority in the modelling of long memory data. 
 
Keywords-All-Share Index, ARFIMA, SARIMA, Autocorrelation 
Function, Predictive Ability, Long-memory. 

i. Introduction 

The presence of long memory is very obvious in the 
modeling of stock market time-series data such as the All-
share index (ASI). The behaviors of the investors are 
influenced, which can make their decisions depend on 
different investment horizons. According to Baillie (1996), 
stock market data has been found to exhibit characteristics 
that are more consistent with long memory. Long memory 
in time series is described as autocorrelation at long lags 
(Robinson, 2003). One of the key points explained by 
Peters (1991) is the fact that most financial markets have a 

very long memory property. In other words, what happens 
today affects the future forever. This indicates that current 
data correlated with all past data to varying degrees. This 
long memory component of the market cannot be 
adequately explained by systems that work with short 
memory parameters. 

The empirical evidence of the long memory processes 
goes back to Hurst (1951) in the field of hydrology. 
However, interest in long memory models for economic 
series arises from the works of Granger and Joyeux (1980), 
who noted that many of such series are apparently not 
stationary in mean, and yet, the differentiated series usually 
present clear evidence of over-differencing. The property 
of long memory is usually related to the persistence that is 
shown by the sample autocorrelations of certain stationary 
time series, which decrease at a very slow rate, but finally 
converge towards zero, indicating that the innovations of 
these series have transient effects but last for a long time. 
This behavior is not compatible neither with the stationary 
models, which have an exponential decrease in 
autocorrelations and therefore in effects of the 
innovations1 nor with the integrated models, where 
innovations have permanent effects. 

Previous authors such as Granger and Joyeux (1980) 
and Hosking (1981, 1984) have modeled time series in the 
presence of long memory, using the Autoregressive 
fractionally integrated moving average (ARFIMA) model. 
ARFIMA (p, d, q) model, a class of long memory models 
are time series models that generalize ARIMA models by 
allowing non-integer values of the differencing parameter, 
where d is a real number. By allowing the order of 
integration, d, to be a non-integer number, these models act 
as a "bridge" between the processes with ARIMA unit-
roots (d = 1) and stationary ARMA processes (d = 0). 
When 0 <d < 0.5, the ARFIMA processes are stationary, 
that is, its mean level is constant, but deviations from the 
series over this level have a longer duration than when d = 
0. The ARFIMA model searches for a non-integer 
parameter, d, to differentiate the data to capture long 
memory. The useful entry points to the literature are the 
surveys by Robinson, (2003) and Baillie (1996), who have 
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described the development in the modeling of long 
memory on financial data, and of Bearn, (1995) who have 
reviewed long memory modeling in other areas. The 
existence of non-zero d is an indication of long memory 
and its departure from zero measures the strength of the 
long memory. 

Similarly, from the ARIMA scheme’s perspective of 
forecasting the Nigerian stock market returns, Ojo and 
Olatayo (2009) studied the estimation and performance of 
subset autoregressive integrated moving average (ARIMA) 
models. The estimated parameters for ARIMA and subset 
ARIMA processes using numerical iterative schemes of 
Newton-Raphson and the Marquardt Levenberg 
algorithms. The performance of the models and their 
residual variance was examined using AIC and BIC. The 
results of their study showed that the SARIMA model 
outperformed the ARIMA model with a smaller residual 
variance.  

In addition, Emenike (2010) studied the NSE market 
returns series using monthly data of the All-Share-Index 
for the periods January 1985 through December 2008. In 
his study, an ARIMA (1,1,1) model was selected as a 
tentative model for predicting index points and growth 
rates. The results revealed that the global meltdown 
destroyed the correlation structure existing between the 
NSE All-Share-Index and its past values. In the same vein, 
Adeboye and Fagoyinbo (2017) equally modeled the index 
using the SARIMA model and forecasted future values 
using the best-fitted model of order (2, 1, 1)𝑥(0, 1, 1) . 

The main objective of this paper is to explicitly 
account for persistence to incorporate the long-term 
correlations in the series using ARFIMA and SARIMA 
techniques. ARFIMA model has been widely acclaimed as 
a useful tool in modeling time series with a long memory. 
That is a series in which deviations from the long-run mean 
decay more slowly than an exponential decay. SARIMA 
model which is a generalization of the Seasonal 
Autoregressive Integrated Moving Average (SARIMA) 
model, will also be employed as an alternative model in 
this study. This model is applied in some cases where data 
show evidence of non-stationarity, where an initial 
differencing step can be applied to remove stationarity. 
The model is generally referred to as ARIMA (p, d, q) x(P, 
D, Q)s model with seasonal period 𝑠, where  𝑝, 𝑑 and 𝑞 are 
non-negative integers that refer to the order of the 
autoregressive, integrated and moving average parts of the 
model and 𝑃, 𝐷, 𝑄 are also non-negative integers that refer 
to the order of the Seasonal Autoregressive, seasonal 
integrated and Seasonal moving average parts respectively. 

It has been established that previous studies have not 
employed the ARFIMA technique to model NSE ASI, 
hence the need for this study. 

 

 
 

II. Materials And Methods 

In this section, the procedures for building ARFIMA(p,d,q) 
and SARIMA models for this research are discussed. 
Monthly data between January 1991 to December 2018 of 
the NSE ASI are used in the study. The data was sourced 
from Central Bank of Nigeria statistical bulletin. The data 
were divided into test and train. The trained data made up 
about 96.3% of the entire series with the test capturing 
3.7%. 

The general expression for ARFIMA processes 𝑋  is 
defined by: 
Φ(𝐵) = 𝜃(𝐵)(1 − 𝐵) 𝜀    (1) 
where  
Φ(𝐵) = 1 − Φ 𝐵 − ⋯ Φ 𝐵    (2) 
and 
𝜃(𝐵) = 1 + 𝜃 𝐵 + ⋯ + 𝜃 𝐵   (3) 

p and q are the autoregressive (AR) and moving average 
(MA) operators respectively; B is the backward shift 
operator and (1 − 𝐵)  is the fractional differencing 
operator given by the binomial expression; 

(1 − 𝐵) = ∑
( )

( ) ( )
𝐵 = ∑ 𝑛 𝐵         (4) 

Short memory system such as the generalized Seasonal 
ARIMA model for univariate analysis is defined by the 
equation 

∅(𝐵)Φ(𝐵)(1 − 𝐵)(1 − 𝐵 )𝑋 = 𝜃(𝐵)Θ(B )𝜀   (5) 

where B denotes the backward shift operator, ∅, Φ, 𝜃, and 
Θ are polynomials for order p, P, q, and Q respectively. 
𝑋  is the observed time series and 𝜀  represent an 
unobserved white noise series with zero mean and constant 
variance 𝜎 . 

The presence of a long memory process is tested on 
the data using the Hurst exponent. When the integration 
parameter d in an ARIMA process is fractional and greater 
than zero, the process exhibits long memory (Granger and 
Joyeux, 1980). In the work of McLeod and Hipel (1978), 
the process possess long memory if the quantity 
lim → ∑ |𝜌 |    is nonfinite.  

In modeling ARFIMA and SARIMA models, the 
variables are first examined for stationarity. The 
Augmented Dickey-Fuller (ADF) test is used for this 
purpose. This preliminary test is necessary in order to 
determine the order of non-stationarity of the data. 

The ADF regression equation due to Dickey and 
Fuller (1979), Said and Dickey (1984) is given by: 
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∆ 𝑋 = 𝑋 + 𝛼 ∆ 𝑋 + 𝜀  (6) 

where ∆  denotes the differencing operator i.e. 
 ∆ 𝑋 = 𝑋 − 𝑋  
The relevant null hypothesis is  = 0 i.e. the original series 
is non-stationary and the alternative is  > 0 i.e. the 
original series is stationary. Usually, differencing is 
applied until the ACF shows an interpretable pattern with 
only a few significant autocorrelations. 
 
Testing for Long Memory 
The Hurst exponent was produced by a British hydrologist 
Harold Hurst in 1951 to test the presence of long memory 
using the rescaled range analysis approach. The main idea 
behind the R/S analysis is that one looks at the scaling 
behavior of the rescaled cumulative deviations from the 
mean. The R/S analysis first estimates the range R for a 
given n, where: 

𝑅( ) = max 𝑋 − 𝑋 − min 𝑋 − 𝑋                 (7) 

𝑅( ) is the range of accumulated deviation of 𝑋( ) over the 
period of 𝑛 and 𝑋 is the overall mean of the time series. 
Let 𝑆( )  be the standard deviation of 𝑋( )  over the period 
of n. 
This is an indication that; 

𝑅/𝑆 =
( )

( )
            (8) 

whereas, as n increases, equation 7 holds: 

log
( )

( )
= log 𝛼 + 𝐻 log 𝑛  (9) 

From equation (9), the estimate of the Hurst exponent (H) 
is the slope, where H is a parameter that relates mean R/S 
values for subsamples of equal length of the series to the 
number of observations within each equal length 
subsample (Omekara et al, 2016). H is usually greater than 
0. However, when 0 < H < 1, the long memory structure 
exists. If H ≥ 1, the process has infinite variance and is 
non-stationary. If 0 < H < 0.5, anti-persistence structure 
exists. If  H = 0.5, the process is white noise. 

In estimating the long memory parameter, Geweke 
Porter-Hudak (1983) hereinafter referred to as GPH was 
used in this present investigation. This method is based on 
approximated regression equation obtained from the 
logarithm of the spectral density function. Illustrating this 
method, the spectral density function of a stationary model 
𝑋 , 𝑡 = 1, … 𝑇 is written as 

𝑓 (𝜆) = 4𝑠𝑖𝑛 𝑓 (𝜆)          (10) 

where 𝑓 (𝜆) is the spectral density of 𝜀 , which is assumed 
to be a finite and continuous function on the interval 
[−𝜋, 𝜋]. The log spectral density function is written as: 

log[𝑓 (𝜆)] = log[𝑓 (0)] − 𝑑 log 4𝑠𝑖𝑛 + log
( )

( )
  (11) 

where log[𝑓 (𝜆)] is a constant; log 4𝑠𝑖𝑛  is the 

exogenous variable; and log
( )

( )
 is a disturbance error 

term. 
The estimate of d is given by equation 12 below 

𝑑 =
∑ ̅

∑ ̅
    (12) 

where, �̅� =
∑

 

GPH has been analyzed in detail by Tanaka (1999); 
Hurvich (2002);  Robinson (2003), and It has been proved 
in detail that the estimate is consistent and asymptotically 
normal under the assumption of series 𝑥 . 

The model's residual diagnostic checks employed are 
Ljung-Box Test, The Akaike Information Criterion (AIC), 
Root Mean Square Error (RMSE). 

III. ANALYSIS AND RESULTS  

The pattern of time plot is shown in fig.1 below affirmed 
the series not to be from a normal distribution and clear 
evidence of the presence of unit root and seasonal 
variation.  

Fig.1: 
Time Plot of ASI 

Table 1: Descriptive Statistics of NSE ASI  
Descriptive Stat. NSE ASI 

Minimum 528.7 
1st Quarter 5873.3 

Median 21486.6 
Mean 19625.8 

3rd Quarter  29257.9 
Maximum 508.2 
Skewness 0.54978 
Kurtosis 2.60476 

**JB statistics:                  2 = 19.113; df=2; P-value = 0.0
00 

**represent Jarque Bera normality test 
Source: R-Studio Output 

Descriptive statistics of the series which can be evidenced 
from table 1 showed the minimum, mean and maximum 
all-share index series computed for the periods. It can also 
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be seen that the skewness, kurtosis and JB statistics does 
not fully correspond to independent samples from a normal 
distribution but are serially correlated.  

Fig.2: 
ACF Plot of ASI 

Based on the fact that the autocorrelation of the series has 
exponential decay towards zero as shown in figure 2, the 
series was subjected to long memory test and a précised 
order of differencing was determined due to the presence 
of unit root. 

Fig.3: 
PACF Plot of ASI 

Fig.3 described the behavior of the partial autocorrelation 
as it also showed that it is almost zero from lag to lag. 
Hence, adjudged the presence of unit root. 

Table 2: Long memory test and “d” parameter estimation 
results 

Coefficient Estimate Asymp.Std. 
Dev 

Std. error 
deviation 

fdGPH “d” 0.203885 0.1952754 0.2783841 
Hurst Exponent R/S estimation = 0.852844 
Hurst exponent (H) produced by the Rescaled range 
analysis was obtained to be 0.852844 indicating that the 
All-share index data has a long memory structure since 
0.5<H<1. Taking the estimated value of the parameter “d” 
into consideration, its asymptotic deviation value and 
regression standard deviation values are reported in table 3 
which indicated an estimate of 0.203885. 
After estimating the long memory parameter d, the degree 
of autocorrelation in the fractionally differenced ASI is 
examined using the autocorrelation and partial 
autocorrelation function as shown in figure 4 and 5.   

 
Fig.4: ACF Plot of Fractionally Differenced ASI 

Fig.4 showed evidence of MA from lag 1 to 25 since the 
spikes of autocorrelation are above the upper bound and 
was found to be significant. 

 
Fig.5: PACF Plot of Fractionally Differenced ASI 

The partial ACF of the fractionally differenced ASI in fig.5 
also indicated the presence of Autoregressive terms in the 
model since some of the identified PACF were above the 
upper and lower bound. 

Table 3: Train Data Iterated ARFIMA Models 𝑤𝑖𝑡ℎ 𝜎 , AIC, 
BIC and Log Likelihood results 

Model 𝝈𝟐 AIC BIC Log 
likelihoods 

ARFIMA (2, 0.204, 2) 3001967 4846.09 4872.56 -2416.05 
ARFIMA (3, 0.204, 2) 2858426 4831.73 4861.98 -2407.87 
ARFIMA (2, 0.204, 1) 3024911 4847.52 4870.20 -2417.76 
ARFIMA (4, 0.204, 1) 2832308 4827.43 4858.68 -2406.22 
ARFIMA (3, 0.204, 2) 2837933 4830.09 4864.11 -2406.04 

Source: R-Studio Output 

The iterated ARFIMA models in table 3 indicated that 
ARFIMA(4, 0.204, 1) was found to be the best from the 
several fitted models with the lowest variance, AIC, and 
BIC of 2832308, 4827.45, and 4858.68 respectively, and a 
higher log-likelihood of -2406.22. 

Table 4: Results of the estimated ARFIMA (4, 0.204, 1) 
model parameters 

Parameters Estimates Z-value Pr(>|z|) 
AR(1) ≡ 𝜙  0.281097 2.45595 0.0141 
AR(2) ≡ 𝜙  0.070767 6.87034 0.0000 
AR(3) ≡ 𝜙  0.201889 3.68046 0.0002 
AR(4) ≡ 𝜙  -0.24186 -5.74358 0.0000 
MA(1) ≡ θ  -0.630882 -5.74718 0.0000 

Source: R-Studio Output 
The estimated coefficients of the identified model are fitted 
thus: 
𝑋 = 𝜀 − θ 𝜀 + 𝜙 𝑋 + 𝜙 𝑋 + 𝜙 𝑋 + 𝜙 𝑋     
(13) 

𝑋 = 𝜀 + 0.630882𝜀 + 0.281097𝑋 + 0.070767𝑋 +
0.201889𝑋 + 0.24186𝑋             (14) 

Having fitted the ASI series using the fractionally 
integrated moving average technique, it can be seen that 
the coefficients of the best-identified model were found to 
significantly contribute in predicting the out-of-sample 
data of the series.  
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Model Identification Using Generalized Box Jenkins 
SARIMA (p,d,q)X(P,D,Q)12  
A graphical inspection of the plot of the original series as 
conducted in fig.1, fig.2 and fig. 3 does not show any 
evidence of stationarity. Differencing at order 1 yielded a 
stationary series as shown in Figs. 6, 7, and 8.  

 
Fig.6: Time Plot of 1st Order Differenced ASI 

Fig.7: 
ACF Plot of 1st Order Differenced ASI 

Fig.8: 
PACF Plot of 1st Order Differenced ASI 

Table 5: ADF test for unit root result 
Test Lag order p-value 5% Test Statistic 

@Level 6 0.1652 -2.9753 
@1st Difference 6 0.01 -5.2938 

Source: R-Studio Output 
Table 5 contains the summary of the results of the ADF test at 
level and at first differencing which is also a confirmation that the 
series is stationary at first order differencing because of its p-
value of 0.01 < α = 0.05. Since the series is stationary at order 1 
integration, the order of MA is determined from the ACF plot, 
order of AR at the PACF plot.  

Table 6: Train data Iterated SARIMA Models with 𝜎 , AIC, and 
Log Likelihood results 

Model 𝝈𝟐 AIC Log 
likelihood 

SARIMA 
(3,1,1)x(1,1,0)12 

4211916 5640.69 -2814.34 

SARIMA 
(1,1,3)x(1,1,0)12 

4287296 5646.03 -2817.02 

SARIMA 
(4,1,1)x(1,1,1)12 

2770919 5542.52 -2763.26 

SARIMA         
(2, 1,2)x(1,1,0)12 

4367528 5651.70 -2819.85 

SARIMA  
(1, 1,1)x(1,1,0)12 

4392972 5649.64 -2820.64 

Source: R-Studio Output 
Table 7: Parameter Results of the estimated SARIMA          
(4, 1, 1)x(1,1,1)12 Model 

Parameters Estimates Z-value Pr(>|z|) 
AR(1) ≡ 𝜙  -0.4140 1.56522 0.0541 
AR(2) ≡ 𝜙  0.2244 3.67267 0.0000 
AR(3) ≡ 𝜙  0.2975 4.28057 0.0000 
AR(4) ≡ 𝜙  -0.0256 0.27033 0.3532 
MA(1) ≡ θ  0.5471 2.11073 0.0000 

SAR(1) ≡ Φ  0.0819 1.34925 0.0865 
SMA(1) ≡   -1.0000 17.6366 0.0000 

 
From the iterated SARIMA models in table 6, the confirmatory 
analysis indicated that SARIMA (4, 1, 1)x(1,1,1)12 was found to 
be the best from several iterated models. The model has the 
lowest variance and AIC of 2770919 and 5542.52 respectively 
with the highest log-likelihood of -2763.26. 

The model specification for identified 
SARIMA(4,1,1)x(1,1,1)12 in table 7 is written as; 
𝑌 = 𝜀 + 𝜃 𝜀 + 𝜃 𝜀 + Θ 𝜀 − 𝜙 𝑌 −
𝜙 𝑌 − 𝜙 𝑌 − 𝜙 𝑌 − Φ 𝑌                  (15) 
 
Substituting the coefficients, we have; 
𝑌 = 𝜀 + 0.5471𝜀 − 𝜀 + 0.4140𝑌 − 0.2244𝑌 −
0.2975𝑌 + 0.0256𝑌 − 0.0819𝑌                     (16) 
 
The adequacies of the two identified models were  
subjected to a diagnostic check using Ljung-Box test as 
shown below: 

 
Table 8: Summary of Diagnostic Check for the Two Best 

Identified Models 
Model 
Type  

Model Chi-
Squared 

DF P-value 

ARFIMA ARFIMA (4, 0.204, 1) 0.00167 1 0.9969 
SARIMA SARIMA (4, 1,1)x(1,1,1)12 0.0002 1 0.9674 

Source: R-Studio Output 
The small values of Chi-square statistic with corresponding 
larger p-values > 5% significance level in the Ljung-Box 
test for both ARFIMA and SARIMA models suggested the 
failure in rejecting the null hypothesis that all of the 
autocorrelation functions are zero. In other words, we can 
conclude that there is no evidence for non-zero 
autocorrelations in the residuals of the fitted ARFIMA and 
SARIMA models. Hence, the ARFIMA and SARIMA 
models are adjudged to be parsimoniously fitted.  This also 
indicates that the models captured better the dependence in 
the series and can be confirmed to be adequate for 
predicting the Nigerian Stock Exchange All-share index. 

Evaluation of Predictions 
Predicted values of the fitted ARFIMA(4,0.204,1) and 
SARIMA(4,1,1)x(1,1,1)12 were studied using the test data 
after an adequacy check of the models have been done. 
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From the prediction performances results of the best-
fitted ARFIMA and SARIMA models above, the predicted 
values of ARFIMA(4,0.204,1) are not closer to the 
observed values from January to April 2018 compared to 
the predicted values of SARIMA(4,1,1)x(1,1,1)12. Other 
subsequent months showed a closer and better performance 
of the ARFIMA model in predicting the All-share index 
but the Seasonal ARIMA model outperforms the former 
based on their prediction accuracy.  
 
 

Table 9: Prediction performance of the best fitted 
ARFIMA and SARIMA models 

Date Test Data 
(Observed 
values) 

ARFIMA 
(4,0.204,1) 

SARIMA 
(4,1,1)x(1,1,1)12 

Jan 2018 44343.65 38293.51 38100.85 
Feb 2018 43330.54 38449.59 38951.21 
Mar 2018 41504.51 38185.25 38776.91 
Apr 2018 41268.01 38088.60 39435.58 
May 2018 38104.54 37842.75 40759.14 
Jun 2018 38278.55 37575.28 41270.76 
Jul 2018 37017.78 37338.84 41578.04 
Aug 2018 34848.45 37031.21 40939.09 
Sep 2018 32766.37 36760.54 40976.87 
Oct 2018 32466.27 36464.35 40828.70 
Nov 2018 30874.17 36167.39 40730.00 
Dec 2018 31430.5 35878.35 41228.12 

MAE 
RMSE 
MAPE 

3219.33 956.1848 
3727.423 1630.871 
0.088388 4.110131 

 Source: R-Studio Output 

Performances of the best-fitted models were further 
evaluated using Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and Mean Absolute Percentage 
Error (MAPE). The lower values of these accuracy 
statistics (MAE and RMSE) indicate a better fit 
considering SARIMA(4,1,1)x(1,1,1)12 . RMSE is a good 
measure of how accurately the model predicts the response 
and is an important criterion for fit if the main purpose of 
the model is prediction. Considering the RMSE, results 
showed that the Seasonal ARIMA model predicted better 
than the ARFIMA model due to its lower RMSE of 
1630.871 and higher MAPE of 4.11% compared to its 
ARFIMA counterpart with a higher RMSE of 3727.423 
and lower MAPE of 0.089% 

  

Fig.9: ARFIMA forecasts 

 
 Fig.10: SARIMA forecasts 
It is also evident from the predicted series shown in fig. 9 
and fig.10 prediction intervals that the upward All-share 
growth was captured better in the Seasonal ARIMA 
forecasts compared to its counterpart ARFIMA model. 

IV. CONCLUSION 

In this paper, efforts to compare the predictive ability of 
ARFIMA and SARIMA models for long memory data, 
have been established with dexterity. The autocorrelation 
function of the All-Share Index (ASI) data showed 
persistence characteristics with exponential decay towards 
zero which is one of the features of a long memory 
process. This led to the fitting of a suitable 
ARFIMA(4,0.204,1) model. A suitable SARIMA model 
was equally fitted to capture the presence of seasonal 
effects in the researched data. The ARFIMA model was 
not found to be better than the Seasonal ARIMA model as 
indicated by the model diagnostic tools. The estimated 
forecast values from ARFIMA model were not of better 
precision compared to that of SARIMA, as indicated by the 
forecast evaluation tools applied on models. 

Theoretically, it is also not clear if the fractional 
differenced type of models captures the long-memory 
tendencies better than the models where the differencing 
parameter is an integer. Thus, the result of this research is 
in line with that of Ray (1993); Adeboye and Fagoyinbo 
(2017) works where the former made comparison between 
ARFIMA models and standard ARIMA models and the 
later used SARIMA of order (2, 1, 1)𝑥(0, 1, 1)   to model 
and forecast NES ASI. The results of Ray study showed 
that higher-order AR models are capable of forecasting the 
longer term well when compared with ARFIMA models. 
The research, therefore, concludes that NSE ASI is better 
modeled using the generalized SARIMA model than the 
Autoregressive Fractional Integrated Moving Average.  
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