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Abstract — The passion to carry out this research work was 
ignited by wondering under what conditions the 
nonparametric bootstrap data generating processes (DGP) 
produces minimum error when compared with the 
parametric bootstrap DGP and also to ascertain the 
performance of the Nigeria stock market, in terms of bias, 
standard error and other information criteria. Nigeria stock 
market data sets (1987-2016) were analyzed using parametric 
and nonparametric bootstrap DGPs techniques for simple 
linear regression (SLR) models were employed to fit the data 
set. Evidence showed that the original data Stock Market 
Capitalization (ODSMC) model without bootstrap resulted to 
a poor model with high bias. Results also showed that when 
the sample size was small ≤ 200, in almost all the bootstrap 
conditions, the nonparametric bootstrap method performed 
better than all the parametric counterparts evident from the 
reported smallest conditional bias. If the Parametric Stock 
Market Capitalization(PSMC) bootstrap model with the high 
bootstrap level had not been explored in this study, the 
nonparametric Stock Market Capitalization Model (NPSMC) 
bootstrap model would have been exclusively ranked first in 
producing the smallest bias in the three tests length. But for 
large sample (≥10000), the reverse is the case. The PSMC and 
NPSMC models show that real income and saving rate are 
positively significant linear functions of the stock market 
capitalization and covaries with it. Across all the bootstrap 
conditions, it was obvious that all the models that worked well 
have very low HQIC, SBIC, AIC, adjusted R2 with standard 
error term ≤ 0.005 and minimum bias confirming that the 
stock market in Nigeria performance is beyond average. This 
also provides good models for prediction of stock market 
performance. 

Keywords-Bootstrap, Stock market, Performance, Information 

criteria, Prediction, Data generating processes. 

I. INTRODUCTION 

The capital market in any country is one of the major 
pillars of long-term economic growth and development. 
The market serves a broad range of clientele, including 
different levels of government, corporate bodies and 
individuals within and outside the country.  Capital 
markets help in boosting the financial system as well as 
mobilizing long-term debt and equity finance for 
investments in long-term assets. This market is a 
framework through which businesses and government raise 
long term funds for investment. It has been one of the 
major means through which foreign funds are injected into 
most economies and the tendency towards a global 
economy is more visible there than anywhere else. It is 
therefore quite valid to state that the growth of the capital 
market has become one of the most important tools for 
measuring the overall economic growth of a nation. Many 
studies have been carried out on the stock market, [1-10]. 
This paper presents examples of problems in estimation 
that demonstrate the use and performance of the parametric 
and nonparametric bootstrap in econometric settings. The 
examples are illustrated with two empirical applications of 
bootstrap on Nigeria stock market data sets. 

 Several research works have been carried out in the 
area of reviewing empirically the bootstrap methods in 
econometrics, [11-26], but none has been applied on 
Nigeria stock market data sets. Some of the key 
determinants of capital market capitalization are real 
income, saving rate, financial intermediary development, 
and stock market liquidity.  
 In this study, the various bootstrap DGP from 
parametric and nonparametric approaches were the 
estimation methods of interest. Therefore, the purpose of 
this study is to ascertain the performance of the Nigeria 
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stock market and to compare the nonparametric and 
parametric bootstrap DGP methods in estimating the bias, 
standard errors and other information criteria of Nigeria 
stock market data sets. The sample size of Nigeria stock 
market data sets available was very small that bootstrap 
needed to be carried out. However, this study will focus on 
the bootstrapping regression models from real income and 
savings rate on stock market capitalization under a variety 
of assessment conditions. In the context of regression, 
standard error, bias and other information criteria can be 
examined at estimation point.  It is pertinent to note that 
finding bias, standard error and other information criteria 
may lead to selection of accurate statistical inference, test 
samples, or test procedures. Reporting standard error and 
bias on available data, such that observations of certain 
kind may be more likely to be reported and consequently 
used in this research. 

II. MATERIALS AND METHODS 

The procedures for nonparametric and parametric bootstrap 
methods are as follows; 
Step 1: Randomly draw a sample of size “N”from the 
population distribution. This random sample is called 
Replication r. In this study, only the stock market 
capitalization was considered, thus, a sample point reflects 
both the real income and savings rate. 
Step 2: From Replication r, randomly draw a sample of 
size N with replacement. This random sample is named the 
Bootstrap Sample b. 
Step 3: Evaluate the bootstrap samples from Step 1 and 
Step 2. For a specific point is denoted as * ( ) where b 
indicates the bth bootstrap sample, and the superscript * 
emphasizes that these results are from the bootstrap 
samples (as opposed to the original sample). 
Step 4: Repeat Step 1 to Step 3 B times to obtain * ( ).  
Step 5. Obtain the estimated bias and standard error at each 
point.  

While, the parametric bootstrap method uses 
simulation steps that are similar to those in the 
nonparametric bootstrap method except that: 
i. A parametric model is first fit to the replications drawn 
from the population. 
ii. Bootstrap samples are drawn from the fitted replication 
distribution rather than the original replication. 

   

A. Parametric Bootstrap Data Generating Process           
( DGP) 

Given (1), under the assumption that the error terms are 
normally distributed.  
                             yt= Xtβ + ut,  ��

∗~ NID(0,��)                (1) 

The first step in constructing a parametric bootstrap DGP 
is to estimate (2) by OLS, yielding the restricted estimates 

��, and �̃2. Then the bootstrap DGP is given by 

                     ��
∗ = ���� + ��

∗,   ��
∗~NID(0,s�2),                  (2) 

yt which is just the element of the model (2) characterized 
by the parameter estimates under the null, with stars to 
indicate that the data are simulated. In order to draw a 
bootstrap sample from the bootstrap DGP (2), we first 
draw an n-vector u* from the N(0, �̃2) distribution. The rest 
of the procedure for computing a bootstrap P value is 
identical to the one for computing a bootstrapped P value 
for exact test. For each of the B bootstrap samples,��

∗ a 
bootstrap test statistic��

∗is computed from ��
∗in just the 

same way as ��was computed from the original data, yt in 
(1). 

B. Nonparametric Bootstrap Data Generating Process     
(DGP) 

The parametric bootstrap procedure that we have just 
described, based on the DGP (2), does not allow us to relax 
the strong assumption that the error terms are normally 
distributed. How can we construct a satisfactory bootstrap 
DGP if we extend the models (2) to admit non-normal 
errors? If we knew the true error distribution, whether or 
not it was normal, we could always generate the �*from it. 
Since we do not know it, we will have to find some way to 
estimate this distribution.  

The nonparametric method that will be adopted in this 
study is called “pairs bootstrap’, which was proposed by 
[22]. This method was applied to regressions with 
instrumental variables by [27]. The idea is to resample the 
data instead of the residuals. Thus, in the case of the 
regression model (1), we resample from the matrix [y X] 
with typical row [ytXt]. Each observation of the bootstrap 
sample is, a randomly chosen row from [y X]. This method 
is called the pairs (or pairwise) bootstrap because the 
dependent variable and the independent variables are 
always selected in pairs unlike the parametric methods.  
The pairs bootstrap DGP which is 

                   ��
∗ = ��

∗
�
�� + ��

∗,    [��,
∗ ��

∗]~���(�̅, ��)        (3)  

C. Evaluation Criteria 

The following statistical evaluation criteria were used to 
investigate and understand the bootstrap DGP methods and 
to compare the different types of bootstrap DGP for the 
simple linear regression (SLR) models under a variety of 
assessment conditions. Generally, to evaluate a satisfactory 
degree of performance and validity of the DGP methods 
for the stock market capitalization and its best model, 
several assessment conditions were evaluated 200 times to 
estimate the standard error and bias from the two bootstrap 
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methods in this paper. In bias test by [28, 29], a difference 
of 0.1 standard deviation units is generally considered 
relatively large, whereas a difference of 0.25 is regarded as 
very large. This style will be adopted in this paper. 
These several assessment conditions are described below;  

i. Bootstrap method; as indicated earlier, the 
parametric bootstrap (PB) and nonparametric 
bootstrap (NPB) methods were considered.  

ii. The bootstrapped ability levels investigation and 
evaluation will be described in the same form; 
N(0,1). Here, we use the standard error to get the 
group differences.  

iii. Different sample sizes of three tests lengths:n1= 
200, n2 = 1000 and n3= 10000 were studied. These 
levels represented typical small, medium, and 
large sample sizes. 

iv. Bootstrap levels (PB and NPB levels); B-Level 
will be 99, 499, 1999. These levels also 
represented typical small, medium, and large 
sample sizes and satisfies the pivotal conditions. 

v. Other information criteria (model selection 
criteria): In this section several criteria that will be 
used to compare and choose among bootstrap 
DGP. In-sample will be considered since it 
essentially tells us how the chosen model fits the 
data in a given sample.  
 

The formulas for other information criteria used to 
generate the values in Table 3 (see Appendix), are shown 
as follows; 

a. Adjusted R2 criterion 

As a penalty for adding regressors to increase the R2 value.  
Formula for adjusted R denoted by  ��� is 

               ��� = � −
��� (���)⁄

��� (���)⁄
= � − (� − ��)

���

���
             (4) 

It is pertinent to note that  ��� ≤R2, unlike R2, the adjusted R2 will 
increase only if the absolute t value of the added variable is greater 
than 1. For comparative purposes, therefore, R2 adjusted is a better 
measure than R2. 

 
b. Akaike Information Criterion (AIC):  

The idea of imposing a penalty for adding regressors to the model 
has been carried further in the AIC criterion, which is defined as: 

                        ��� = �
��

�� ∑ ���
�

�
=  �

��
�� ���

�
                     (5) 

Where k is the number of regressors (including the intercept) and n 
is the number of observations. For mathematical convenience, 
equation A, is written as  

                            ��� = �
��

�
� + �� �

���

�
�                            (6) 

WhereIn AIC = natural log of AIC and 2k/n = penalty factor. In 
comparing two or more models, the model with the lowest value of 
AIC is preferred. One advantage of AIC is that it is useful for not 
only in-sample but also out-of-sample performance of a regression 
model, [30]. 
c. Schwartz Bayesian Information Criterion (SBIC): 

Similar in spirit to the AIC, [31], also known as Schwart 
Information Criterion (SIC) or Bayesian Information Criterion 
(BIC) is also consistent, unbiased and sufficient. The only 
difference between AIC and SBIC is that SBIC imposes a harsher 
penalty than AIC. The SBIC criterion is defined as: 

���� = �
�

�� ∑ ���
�

�
=  �

�
�� ���

�
                                                                                         

(7)                                                     
Or in log-form 

�� ���� =
�

�
�� � + �� �

���

�
�                                                                                         

(8) 
Where [(k/n)Inn] is the penalty factor. Like AIC, the lower the 
value of SBIC, the better the model. Again, like AIC, SBIC can be 
used to compare in-sample or out-of-sample performance of a 
model. 

d. Hannan-Quinn information criterion (HQIC) 

In statistics, the Hannan-Quinn Information Criterion (HQIC) is a 
criterion for model selection. It is an alternative to Akaike 
Information Criterion (AIC) and Schwartz Bayesian Information 
Criteria (SBIC) or Bayesian Information Criterion (BIC). And it is 
given as 

                     ���� = ���� �
���

�
� + 2� ��� ��� �                       (9)                                              

where � is the number of parameters, n is the number of 
observations, and RSS is the residual sum of squares that 
results from linear regression or other statistical  

Table 1: Comparison of Real Income Bias and Standard 
error of the SLR for Parametric and Nonparametric 
Bootstrap Models in a Stock Market Capitalization. 
 
BootstrapAbilitySample 
Level      Level        Size 

Bias for the Bootstrap 
Models 

Standard error for Bootstrap 
Models 

PSMCMNPSMCM  
Diff 

PSMCMNPSMCM  Diff 

 B=99      N(0,1)        
200                                                                                                                          

                    
1000 

                              
10000 

0.0025   0.0017      
0.0008  
0.0317   0.0312      
0.0005  
0.0018   0.0015      
0.0003  

 

0.0809    0.0790      
0.00I9 
0.0282    0.0275     
0.0007 
0.0121    0.0117     
0.0004 

 
  B=499    N(0,1)      

200                                                                             
                              

1000 

0.1224   0.1220      
0.0004  
0.0319   0.0311      
0.0008 0.0158  

0.1189    0.1181     
0.0008 
0.0498   0.0500   -
0.0002 
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10000                  

 

0.0160     -
0.0002 

 

0.03370.03370.0000 
 

 B=1999  N(0,1)        
200                                                                                                                          

                             
1000 

                            
10000 

0.1220   0.1219      
0.0001 0.0590   
0.0572      
0.0018  
0.0009   0.0009      
0.0000 

 

0.1197  0.1128       
0.0006 
0.0282  0.0336     
0.0000 
0.0022  0.0022     
0.0000  

 
Note. Bold values signify smallest bias and standard error 
in the parametric and nonparametric bootstrap models in 
table 1, including their differences. 
 

Table 2: Comparison of Saving Rate Bias and Standard 
error of the SLR for Parametric and Nonparametric 
Bootstrap Models in a Stock Market Capitalization. 

BootstrapAbility  
sample 
 Level         Level    
Size 

Bias for the Bootstrap 
Models 

Standard error for 
Bootstrap Models 

 
PSMCM  NPSMCM Diff PSMCM NPSMCM 

Diff 

 B=99       N(0,1)          
200                                                                                                              

                                
1000 

                    
10000 

0.0024     0.0015   
0.0009  
0.0316     0.0312   
0.0004  
0.0019     0.0015  
0.0004  

 

0.0806    0.0790    
0.00I6 
0.0282    0.0275   
0.0007 
0.0121    0.0116  
0.0005 

 
 B=499  N(0,1)             

200                                              
                                

1000                                    
10000       

 

0.1223    0.1220      
0.0003  
0.0318    0.0312      
0.0006 
0.0155   0.0162      
-0.0007 

 

0.1129  0.1111  
0.0008 
0.0498 0.0500   -
0.0002 
0.0024  0.0032  
0.0008 

 
B=1999    N(0,1)             

200                                                                                                    
                               

1000                     
           10000                                           

 

0.1222    0.1219      
0.0003  
0.0591   0.0572      
0.0019  
0.0007   0.0007      
0.0000 

 

0.1197  0.1128   
0.0006 
0.0282  0.0336   
0.0000 
0.0021  0.0021  
0.0000  

 
 

Note. Bold values signify smallest bias and standard error 
in the parametric and nonparametric bootstrap models in 
table 1, including their differences. 
 
 
 
 
 

IV. DISCUSSIONS 

In this study, three models were selected to represent the 

real and bootstrap data sets after more than 200 trials were 

carried out within each bootstrap level (B).  The selection 

was based on the fact that as n (number of trials) increase, 

the models maintain the same pattern, and unless there is 

change in the pattern another model will not be selected. 

The three equations (11, 13, 15), represent each of the 

groups of models selected; results presented in Tables 1, 2 

&3 will be discussed.  Also, to present the results more 

clearly, three subsections included as stated above will be 

further explained. 

Table 1, shows that across all the bootstrap conditions, 
it was obvious that all the models that worked well have 
very low HQIC, SBIC, AIC, adjusted R2>50%. In order to 
highlight the differences among the models, evaluate and 
ascertain the performance of the bootstrap DGP methods 
on Nigerian capital market data sets, two separate groups 
are laid out, with (a) for model -ODSMC from the real data 
set (b) for models PSMC and NPSMC from the bootstrap 
data sets. This will enable determine the effects of the 
factors of sample size and bootstrap level on a stock 
market data sets. Extreme values in the ranges stated above 
were truncated and very low estimates were also observed, 
results in these ranges are presented in order to 
demonstrate the trends and the performance at the lower 
ends of the distributions for each bootstrap model. The 
bootstrap models provide information to evaluate the 
relative effects of sample size, and group proficiency level 
on the bias, standard error of the stock market. 

 It can be seen from Tables 1 & 2, that sample size and 

test length of bootstrap level had large effects on bias of 

the SLR, ability level had relatively small or mixed effects 

under some conditions bias was smaller for a larger sample 

size and a shorter test length. Given the same test length, a 

smaller ratio normally yielded slightly larger bias, 

especially for the parametric model with the smaller 

estimate. Table 2&3 show that NPSMC model performed 

very well in all the various assessment conditions, expect 

at B=499, N(0,1), n=10000 in Table 2,that is, the bias and 

standard error values of PSMC and NPSMC models are 

(0.0158 and 0.0337) and (0.0160 and 0.0337) respectively. 

At this point PSMC and NPSMC models have the same 

standard error. Also, B=1999, N(0,1), n=10000, both 

models have approximately the same bias and standard 

error in Tables 2 & 3. Although the effect of group 

proficiency level on bias of the simple linear regression 
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(SLR) was quite small, it seemed there was an interaction 

effect between real income and savings rate. 

For the nonparametric bootstrap DGP method, as the 

group differences became larger, the bias of the SLR 

became somewhat smaller; however, for the parametric 

methods with a longer test, the bias of the SLR became 

slightly larger as the groups were more different. There 

was no evidence showing any effect of the group 

proficiency level on the parametric method with a short 

test. Across all the conditions considered, models PSMC 

model yielded much larger bias than NPSMC model in 

most of the estimates. Therefore, for the bootstrap models 

considered, the pattern was clear that at lower sample sizes 

and bootstrap levels NPSMC model behave better with 

respect to bias and standard error. However, it does not 

mean the higher sample sizes were always associated with 

the smaller bias along all the estimated values [14], [15], 

[19], [16] and [32]. As a result, the real income sector can 

exert a positive influence on the stock market through the 

volume of savings. Therefore, stock market and economic 

growth positively influence each other in the process of 

development. In reality, real income, saving rate interact 

during all stages of development. In other words, there 

exist a positive correlation between real income and saving 

rate on the stock market.  

A general observation is that across the group ability 
level, as the sample size and bootstrap level increased, the 
bias reduced, meanwhile, the differences among the 
parametric and nonparametric bootstrap models were 
becoming more similar. Also, as the sample size, bootstrap 
level increased, the standard error generally decreased. 
However, the differences between the results from 
PSMCM and NPSMC were small (≤ 0.005) both bootstrap 
models can be recommended for predictions of stock 
market performance, since the determinants are highly 
significant. 

V. CONCLUSION 

When the sample size was moderate (≤ 200) in almost all 

the bootstrap  conditions, the nonparametric bootstrap 

method performed better than all of the parametric 

bootstrap models by showing the smallest  bias and 

standard error. Based on the information criteria, across all 

the bootstrap conditions, it was obvious that two models 

worked well, having very low HQIC, SBIC, AIC and 

adjusted R2 and confirming that the models are good model 

for further studies and predictions in the economic sectors 

especially in the stock market. Based on the evidence from 

this study, the paper concludes that bootstrap data 

generating processes can be used to infer the statistical 

properties of the estimators and constructed inference 

based on bootstrapped data sets as done with the stock 

market capitalization data set. 
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APPENDIX: 
Table 3: Comparison of PSMC and NPSMC Extract from the Model Output Selection

.  

Lag HQICNPSMC SBICNPSMC AICNPSMC 
R2

(adjusted) 

NPSMC 
HQICPSMC SBICPSMC AICPSMC 

R2
(adjusted) 

PSMC 

0 74.7422 69.5277 84.7114 74.7174 78.5476 66.8854 70.1124 73.9982 
1 68.1163 66.3343 69.6323 68.6613 62.4412 70.1242 63.3225 62.1863 
2 78.4265 65.6843 89.9901 65.9923 61.3321 65.4113 88.0111 64.5213 
3 67.7632 77.0111 70.8976 77.1142 79.0001 63.5326 69.5542 69.4475 
4 75.0141 64.5376* 66.5221* 70.7701 60.9771* 76.8890 60.5313* 74.7621 
5 61.4312* 70.8742 72.0042 63.7236* 71.4002 61.2287* 71.5590 71.2474* 


