Stability Analysis of Some Fixed Point Iterative Procedures

K. Rauf¹; D. J. Raji²; B. Y. Aiyetan³; O. R. Zubair⁴

1.4Department of Mathematics,
University of Ilorin,
Ilorin, Nigeria.
e-mail: raufkml@gmail.com¹; krauf@unilorin.edu.ng¹

^{2,3}Department of Mathematics, Federal University of Technology, Minna, Nigeria.

Abstract— Several approaches have been used to obtain results on the stability of S-Iteration, Thiawan iteration and Picard-Mann iteration when dealing with different classes of quasi-contractive operators. In this paper, we established the stability analysis of S-Iteration, Thiawan iteration and Picard-Mann iteration using Simeon Riech contractive condition. Moreover, the aforementioned iterative schemes were shown to be T- stable.

Keywords: Simeon Riech contractive condition; T-Stable, S-Iterative procedure; Thianwan Iterative Procedure and Picard-Mann Iterative procedure.

I. INTRODUCTION

Let X be a normed linear space and T is a function mapping X to itself. Suppose $x_0 \in X$ and $x_{n+1} = f(T,x_n)$ are iterative procedures which yields a sequence of points $\{x_n\}$ in X. Let $F(T) = \{x \in X : Tx = x\} \neq \emptyset$ and that $\{x_n\}_{n=0}^{\infty}$ converges strongly to $p \in F(T)$. Suppose $\{y_n\}_{n=0}^{\infty}$ is a sequence in X and $\{\epsilon_n\}$ is a sequence in $[0,\infty)$ given by $\epsilon_n = \|y_{n+1} - f(T,y_n)\|$. If $\lim_{n\to\infty} \epsilon_n$ implies $\lim_{n\to\infty} y_n = p$, then the iteration procedure defined by

$$x_{n+1} = f(T, x_n)$$

is said to be T- stable or stable with respect to T. If $\sum_{n=0}^{\infty} \epsilon_n < \infty$ implies $y_n \to p$, then the iteration procedure is said to be almost T -stable. Clearly, any T- stable iteration procedure is almost T -stable, but the converse may not necessarily be true. See [1-3, 5, 6 & 10].

II. RESEARCH METHODOLOGY

Let (X, d) be a metric space, T a self- map of X with $F_T = \{x \in X : = x \} \neq \emptyset$ and consider a fixed point iteration procedure, that is, a sequence $\{x_n\}_{n=0}^{\infty}$ defined by $x_0 \in X$ and

$$x_{n+1} = f(T, x_n), \ n = 1, 2, 3, \cdots$$
 (1)

S-Iteration is defined as:

where f is a function.

Definition. 1(i) S

- $f(T, x_n) = (1 \alpha_n)Ty_n + \alpha_nTy_n,$ where $y_n = (1 \beta_n)x_n + \beta_nTx_n,$ $\{\alpha_n\}_{n=0}^{\infty} \text{ and } \{\beta_n\}_{n=0}^{\infty} \subset [0, 1]$
 - (ii) Thaiwan defined the following iteration: $f(T,x_n) = (1-\alpha_n)y_n + \alpha_n Ty_n,$ where $y_n = (1-\beta_n)x_n + \beta_n Tx_n,$ $\{\alpha_n\}_{n=0}^{\infty} \text{ and } \{\beta_n\}_{n=0}^{\infty} \subset [0, 1]$
 - (iii) Picard-Mann iteration is defined as $f(T, x_n) = Ty_n$

where
$$y_n=(1-\alpha_n)x_n+\alpha_nTx_n$$
 and
$$\{\alpha_n\}_{n=0}^{\infty}\subset [0,1] \tag{4}$$

Definition 2 (Simeon Riech Contraction mapping) Let T be a complete metric space with distance function d and T is a function mapping X into itself, the following contractive type of mapping holds: If there exists non-negative numbers a, b, c satisfying a + b + c < 1 such that for each $x, y \in X$, we have $d(Tx, Ty) \le ad(x, T(x)) + bd(y, T(y)) +$

cd(x,y)

Let $\{a_n\}_{n=0}^{\infty}$, and $\{b_n\}_{n=0}^{\infty}$ be sequences of non-negative numbers and $0 \le q < 1$ so that $a_{n+1} \le qa_n + b_n$ for all $n \ge 0$:

- (i) if $\lim_{n\to\infty} b_n = 0$, then $\lim_{n\to\infty} a_n = 0$;
- (ii) if $\sum_{n=0}^{\infty} b_n < \infty$, then $\sum_{n=0}^{\infty} a_n < \infty$.

Remark If q = 1, then the above result holds in a weaker form. See [4, 7, 8 & 9].

III. ANALYSIS

The analysis of S-Iteration, Thiawan iteration and Picard-Mann iteration via Simeon Riech contractive condition.

IV. RESULTS

In this section, we shall prove the stability analysis of S-Iteration, Thiawan iteration and Picard-Mann iteration using Simeon Riech contractive condition.

Theorem 1

Let *X* be a normed linear space and $T: X \to X$ be a mapping satisfying (5) with

 $(d(u,v) = \|u-v\|)$. Suppose T has a fixed point p. Let x_0 be arbitrary element but fixed in X and define $\{x_n\}_{n=0}^{\infty}$ as (2), where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] such that $0 < \infty$, $\beta \le \infty_n \beta_n$ for some α, β . Let $\{y_n\}$ be any sequence in X with $\epsilon_n = y_{n+1} - ((1-\alpha_n)TS_n + \alpha_nTS_n)$ and $S_n = (1-\beta_n)y_n + \beta_nTS_n$. Then, $\{x_n\}$ converges strongly to p and is T-stable with respect to T.

Proof:

(5)

Let
$$f(T, x_n) = (1 - \alpha_n)Ty_n + \alpha_nTy_n$$
, where $y_n = (1 - \beta_n)x_n + \beta_nTx_n$

implies $\epsilon_n = ||y_{n+1} - f(T, x_n)||$. Therefore,

$$||y_{n+1} - p|| = ||y_{n+1} - ((1 - \alpha_n)TS_n + \alpha_n TS_n)|| + ||((1 - \alpha_n)TS_n + \alpha_n TS_n) - p||$$

$$\leq \epsilon_n + \| ((1 - \alpha_n)TS_n) - p \| + \| (\alpha_n TS_n) - p \|$$

$$= \epsilon_n + (1 - \alpha_n)\|TS_n - p\| + \alpha_n\|TS_n - p\|$$

$$= \epsilon_n + [(1 - \alpha_n) + \alpha_n]\|TS_n - p\|$$

by (5), we have

$$\begin{split} \|y_{n+1} - p\| &\leq \epsilon_n \\ &+ [(1 - \alpha_n) + \alpha_n] [a \| S_n - p \| \\ &+ b \| S_n - T S_n \| + c \| p - T p \|] \\ &\leq \epsilon_n + [(1 - \alpha_n) + \alpha_n] \ a \| S_n - p \| \\ &\leq a \| S_n - p \| + \epsilon_n. \end{split}$$

Also.

$$\begin{split} S_n &= (1 - \beta_n) y_n + \beta_n T S_n \\ &\leq a \| [(1 - \beta_n) y_n + \beta_n T y_n] - p \| + \epsilon_n \\ &\leq a \| [(1 - \beta_n) y_n] - p \| + \| [\beta_n T y_n] - p \| + \epsilon_n \end{split}$$

$$\leq a(1 - \beta_n) \|y_n - p\| + a\beta_n \|Ty_n - p\| + \epsilon_n$$

by applying (5) we have

$$S_n \le a(1 - \beta_n) \|y_n - p\| + a\beta_n [a\|y_n - p\| + b\|y_n - Ty_n\| + c\|p - Tp\|] + \epsilon_n$$

$$\le a(1 - \beta_n) \|y_n - p\| + a^2\beta_n \|y_n - p\| + \epsilon_n$$

$$\le [a(1 - \beta_n) + a^2\beta_n] \|y_n - p\| + \epsilon_n$$

by Lemma 1 and the fact that a + b + c <

1,
$$\sum_{n=1}^{\infty} \alpha_n$$
, $\beta_n = \infty$, $\lim_{n\to 0} \epsilon_n = 0$
and $\lim_{n\to 0} ||y_n - p|| = 0$ implies $||y_n - p|| = 0$
and $y_n = p$.

But $y_n \approx x_n$, therefore $x_n = p$.

Theorem 2

Let X be a normed linear space and $T: X \to X$ be a mapping satisfying (5) with (d(u, v) = ||u - v||). Suppose T has a fixed point p. Let x_0 be arbitrary element but fixed in X and define $\{x_n\}_{n=0}^{\infty}$ as (3) where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1] such that $0 < \alpha, \beta \le \alpha_n \beta_n$ for some α, β . Let $\{y_n\}$ be any sequence in X with

$$\epsilon_n = \|y_{n+1} - ((1 - \alpha_n)S_n + \alpha_n T S_n)\| \text{ and } S_n = (1 - \beta_n)y_n + \beta_n T S_n.$$

Then, $\{x_n\}$ converges strongly to p and is T-stable with respect to T.

Proof:

Suppose $f(T,x_n)=(1-\alpha_n)y_n+\alpha_nTy_n$ where $y_n=(1-\beta_n)x_n+\beta_nTx_n$ that is $\epsilon_n=\|y_{n+1}-f(T,x_n)\|$. Hence,

$$||y_{n+1} - p|| = ||y_{n+1} - ((1 - \alpha_n)S_n + \alpha_n T S_n)|| + ||((1 - \alpha_n)S_n + \alpha_n T S_n) - p||$$

$$\leq \epsilon_n + \| ((1 - \alpha_n)S_n) - p \|$$

$$+ \| (\alpha_n T S_n) - p \|$$

$$= (1 - \alpha_n) \| S_n - p \| + \alpha_n \| T S_n - p \| +$$

$$\epsilon_n$$

by applying (5), we have

$$||y_{n+1} - p|| \le [(1 - \alpha_n)||S_n - p|| + \alpha_n][a||S_n - p|| + b||S_n - TS_n|| + c||p - Tp||] + \epsilon_n$$

$$\le (1 - \alpha_n)||S_n - p|| + \alpha_n a||S_n - p|| + \epsilon_n$$

$$\leq (1 - \alpha_n + \alpha_n a) ||S_n - p|| + \epsilon_n$$

by definition

$$S_{n} = (1 - \beta_{n})y_{n} + \beta_{n}TS_{n}$$

$$\leq (1 - \alpha_{n} + \alpha_{n}a)||[(1 - \beta_{n})y_{n} + \beta_{n}Ty_{n}] - p|| + \epsilon_{n}$$

$$\leq (1 - \alpha_{n} + \alpha_{n}a)||[(1 - \beta_{n})y_{n}] - p|| + ||[\beta_{n}Ty_{n}] - p|| + \epsilon_{n}$$

$$\leq (1 - \alpha_{n} + \alpha_{n}a)(1 - \beta_{n})||y_{n} - p|| + \epsilon_{n}$$

by (5), we have S_n

$$\leq (1 - \alpha_n + \alpha_n a)(1 - \beta_n) \|y_n - p\| + \beta_n [a\|y_n - p\| + b\|y_n - Ty_n\| + c\|p - Tp\|] + \epsilon_n$$

$$\leq (1 - \alpha_n + \alpha_n a)(1 - \beta_n) \|y_n - p\| + a\beta_n \|y_n - p\| + \epsilon_n$$

$$\leq (1 - \alpha_n + \alpha_n a)(1 - \beta_n + a\beta_n) || y_n$$
$$- p || + \epsilon_n$$

by Lemma 1 and the fact that a+b+c < 1, $\sum_{n=1}^{\infty} \alpha_n, \beta_n = \infty$.

$$\lim_{n\to 0} \epsilon_n = 0$$
 and $\lim_{n\to 0} \|y_n - p\| = 0$, implies $\|y_n - p\| = 0$. Hence, $y_n = p$ but $y_n \approx x_n$, therefore, $x_n = p$.

Theorem 3

Let X be a normed linear space and $T: X \to X$ be a mapping satisfying (5) with $(d(u,v) = \|u-v\|)$. Suppose T has a fixed point p. Let x_0 be arbitrary element but fixed in X and define $\{x_n\}_{n=0}^{\infty}$ as (4), where $\{\alpha_n\}$ is a sequences in [0,1] such that $0 < \alpha, \beta \le \alpha_n \beta_n$ for some α, β . Let $\{y_n\}$ be any sequence in X satisfying $\epsilon_n = \|y_{n+1} - TS_n\|$ and $S_n = (1-\alpha_n)y_n + Ty_n$. Then, $\{x_n\}$ converges strongly to p and is T-stable.

Proof:

Let
$$f(T, x_n) = Ty_n$$
 where, $y_n = (1 - \alpha_n)x_n + Tx_n$
then $\epsilon_n = ||y_{n+1} - f(T, x_n)||$

therefore,

$$||y_{n+1} - p|| = ||y_{n+1} - TS_n|| + ||TS_n - p|| \le \epsilon_n + ||TS_n - p||$$

$$\leq |a||S_n - p|| + b||S_n - TS_n|| + c||p - Tp||] + \epsilon_n$$

$$\leq a||S_n - p|| + \epsilon_n$$

hence

$$\begin{split} S_n & \leq a \| [(1-\alpha_n)y_n + Ty_n] - p \| + \epsilon_n \\ & \leq a \| [(1-\alpha_n)y_n] - p \| + \| Ty_n - p \| + \epsilon_n \\ & \leq a (1-\alpha_n) \| y_n - p \| + a \| Ty_n - p \| + \epsilon_n \\ & \leq a (1-\alpha_n) \| y_n - p \| + a [a \| y_n - p \| + b \| y_n - Ty_n \| + c \| p - Tp \| \| + \epsilon_n \\ & \leq a (1-\alpha_n) \| y_n - p \| + a^2 \| y_n - p \| + \epsilon_n \\ & \leq a (1-\alpha_n) \| y_n - p \| + a^2 \| y_n - p \| + \epsilon_n \\ & \leq [a (1-\alpha_n) + a^2] \| y_n - p \| + \epsilon_n \end{split}$$

applying Lemma 1 and the fact that a+b+c<1, $\sum_{n=1}^{\infty}\alpha_n=\infty$, $\lim_{n\to 0}\epsilon_n=0$, $\lim_{n\to 0}\|y_n-p\|=0$, implies, $\|y_n-p\|=0$ and $y_n=p$. But, $y_n\approx x_n$, therefore, $x_n=p$. \blacksquare .

V. DISCUSSIONS

The stability analysis of S-Iteration, Thiawan iteration and Picard-Mann iteration were shown and proved by means of Simeon Riech contractive condition.

VI. CONCLUSION

The result in this work obviously generalizes the results of several authors.

ACKNOWLEDGMENT

The authors are grateful to Prof. J. O. Omolehin for successful supervision of the first author.

REFERENCES

- [1] M. O. Olatinwo., O. Owojori and C. O. Imoru, "On Some stability results for fixed point iteration procedure," J. Math. Stat., vol. 2 (1), 2006, pp. 339–342
- [2] M. O. Osilike, "Stability results for fixed point iteration procedure," J. Nigerian Math. Soc., vol. 14, 1995, pp. 17-29.
- [3] A. M. Harder, and T. L. Hicks, 1988. "Stability results for fixed point iteration procedures," Math.Japonica, vol. 33, pp. 693-706.
- [4] B. E. Rhoades, 1991. "Some fixed point iteration procedures," Intl. J. Math. Math. Sci., vol. 4, pp. 1-16.
- [5] M. O. Olatinwo (2009), "Some stability results for two hybrid fixed point iterative algorithms in normed linear space," Mat. Vesn., vol. 61(4), pp. 247-256.

- [6] V. Berinde, "On the stability of some fixed point procedures," Bul. Stiint. Univ. Baia Mare, Ser. B., Matematica-Informatica, vol. xviii, 2002, pp. 7-14.
- [7] V. Berinde, "On the approximation of fixed points of weak contractive mappings," Carpathian J. Math., vol. 19 No. 1, 2003, pp. 7-22.
- [8] O. T. Wahab and K.Rauf, "On faster implicit hybrid Kirk-multistep schemes for contractive-type operators," International Journal of Analysis, vol. 2016, Article ID 3791506, 10 pages, 2016.
- [9] B. E. Rhoades, "A comparison of various definitions of contractive mappings," Trans. Amer. Math. Soc. vol. 226, 1977, pp. 257-290.
- [10] J. O. Olaleru and A. A. Mogbademu "On the stability of some fixed point iteration procedures with errors," Boletin de la Association MatematicaVenezonala, vol. XVI, No. 1, 2009.