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Abstract— Several approaches have been used to obtain 
results on the stability of S-Iteration, Thiawan iteration and 
Picard-Mann iteration when dealing with different classes of 
quasi-contractive operators. In this paper, we established the 
stability analysis of S-Iteration, Thiawan iteration and 
Picard-Mann iteration using Simeon Riech contractive 
condition. Moreover, the aforementioned iterative schemes 
were shown to be T- stable. 
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I. INTRODUCTION 

Let � be a normed linear space and � is a function 

mapping � to itself. Suppose �� ∈ � and ���� =

�(�, ��) are iterative procedures which yields a sequence 

of points {��} in �. Let �(�) = {� ∈ �: �� = �} ≠ ∅ and 

that  {��}��� 
�  converges strongly to � ∈ �(�). Suppose 

{��}��� 
�  is a sequence in X and {��} is a sequence in 

[0, ∞)� given by   �� = ‖���� − �(�, ��)‖. 

If  lim�→� �� implies lim�→� �� = �, then the iteration 

procedure defined by  

���� = �(�, ��) 

is said to be �- stable or stable with respect to �. If 

∑ ��
�
��� < ∞  implies �� → �, then the iteration 

procedure is said to be almost � −stable. Clearly, any �- 

stable iteration procedure is almost � −stable, but the 

converse may not necessarily be true.See [1-3, 5, 6 & 10]. 

II. RESEARCH METHODOLOGY 

Let (�, �) be a metric space, � a self- map of � with 

�� = {� ∈ �: = � }≠ ∅ and consider a fixed point 

iteration procedure, that is, a sequence {��}���
�  

defined by �� ∈ � and  

���� = �(�, ��),  � = 1, 2, 3, ⋯                            (1) 

where � is a function. 

Definition. 1 

(i) S-Iteration is defined as: 

�(�, ��) = (1 − ��)��� + �����, 

where �� = (1 − ��)�� + �����, 

    {��}��� 
�  and {��}���

� ⊂ [0, 

1]       (2) 

(ii) Thaiwan defined the following iteration: 

�(�, ��) = (1 − ��)�� + �����, 

where �� = (1 − ��)�� + �����, 

    {��}��� 
�  and {��}���

� ⊂ [0, 

1]                       (3) 

(iii) Picard-Mann iteration is defined as 

�(�, ��) = ��� 



Nigeria Statistical Society 
                                         Edited Proceedings of 1st International Conference                                           Vol. 1, 2017 

237 

 

 
© 2017, A Publication of Nigeria Statistical Society 

 

where  �� = (� − ��)�� + ����� and 

{��}��� 
� ⊂ [0, 1]                  (4) 

Definition 2 (Simeon Riech Contraction mapping)  

Let � be a complete metric space with distance 

function � and � is a function mapping � into itself, 

the following contractive type of mapping holds:  

If there exists non-negative numbers �, �, � satisfying 

� + � + � < 1 such that for each �, � ∈ �, we have 

 �(��, ��) ≤ ��(�, �(�)) + ��(�, �(�)) +

 ��(�, �)                       (5)  

Lemma 1 

Let {��}��� ,
�  and {��}��� 

� be sequences of non-

negative numbers and 0 ≤ � < 1 so that ���� ≤

��� + �� for all � ≥ 0: 

(i)  if  lim�→� �� = 0, then lim�→� �� = 0; 

(ii) if ∑ ��
�
��� < ∞, then  ∑ ��

�
��� < ∞. 

Remark If � = 1, then the above result holds in a 
weaker form. See [4, 7, 8 & 9]. 

III. ANALYSIS 

The analysis of S-Iteration, Thiawan iteration and 

Picard-Mann iteration via Simeon Riech contractive 

condition.  

IV. RESULTS 

In this section, we shall prove the stability analysis of 

S-Iteration, Thiawan iteration and Picard-Mann 

iteration using Simeon Riech contractive condition. 

Theorem 1 

  Let � be a normed linear space and �: � → � be a 

mapping satisfying (5) with 

(�(�, �) = ‖� − �‖). Suppose � has a fixed point �. 

Let �� be arbitrary element but fixed in � and define 

{��}���
�   as (2), where {��} and {��} are sequences 

in [0,1] such that 0 <∝, � ≤∝� �� for some �, �. Let 

{��} be any sequence in � with 

�� = ���� − ((1 − ��)��� + �����) and             

�� = (1 − ��)�� + �����. Then, {��} converges 

strongly to � and is �-stable with respect to �. 

Proof:  

  Let �(�, ��) = (1 − ��)��� + �����, where  

�� = (1 − ��)�� + ����� 

implies �� = ‖���� − �(�, ��)‖. Therefore,  

‖���� − �‖ = ‖���� − ((1 − ��)��� + �����)‖ + 

��(1 − ��)��� + ������ − �� 

≤ �� + ��(1 − ��)���� − �� + ‖(�����) − �‖ 

=�� + (1 − ��)‖��� − �‖ + ��‖��� − �‖ 

= �� + [(1 − ��) + ��]‖��� − �‖ 

by (5), we have 

‖���� − �‖ ≤ ��

+ [(1 − ��) + ��][�‖�� − �‖

+ �‖�� − ���‖ + �‖� − ��‖] 

≤ �� + [(1 − ��) + ��] �‖�� − �‖ 

≤  �‖�� − �‖ + ��. 

Also, 

�� = (1 − ��)�� + ����� 

≤ �‖[(1 − ��)�� + �����] − �‖ + �� 

≤ �‖[(1 − ��)��] − �‖ + ‖[�����] − �‖ + �� 
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≤ �(1 − ��)‖�� − �‖ +���‖��� − �‖ + �� 

by applying (5) we have 

�� ≤ �(1 − ��)‖�� − �‖ + ���[�‖�� − �‖ +

�‖�� − ���‖ + �‖� − ��‖] + �� 

≤ �(1 − ��)‖�� − �‖ + ����‖�� − �‖+ �� 

≤ [�(1 − ��) + ����] ‖�� − �‖ + �� 

by Lemma 1 and the fact that � + � + � <

1,   ∑ ��, ��
�
��� = ∞, lim�→� �� = 0 

and lim�→�‖�� − �‖ = 0 implies ‖�� − �‖ = 0 

and �� = �. 

But �� ≈ ��, therefore  �� = �. ∎  

Theorem 2 

  Let � be a normed linear space and �: � → � be a 

mapping satisfying (5) with (�(�, �) = ‖� − �‖). 

Suppose � has a fixed point �. Let �� be arbitrary 

element but fixed in � and define {��}���
�   as  (3) 

where {��} and {��} are sequences in [0,1] such that 

0 < �, � ≤ ���� for some �, �. Let {��} be any 

sequence in � with  

�� = ‖���� − ((1 − ��)�� + �����)‖ and �� =

(1 − ��)�� + �����. 

Then, {��} converges strongly to � and is �-stable 

with respect to �.  

Proof:  

  Suppose �(�, ��) = (1 − ��)�� + ����� where 

�� = (1 − ��)�� + ����� that is �� = ‖���� −

�(�, ��)‖. Hence,  

‖���� − �‖ = ‖���� − ((1 − ��)�� + �����)‖ + 

��(1 − ��)�� + ������ − �� 

≤ �� + ��(1 − ��)��� − ��

+ ‖(�����) − �‖ 

=(1 − ��)‖�� − �‖ + ��‖��� − �‖ +

�� 

by applying (5), we have 

‖���� − �‖ ≤ [(1 − ��)‖�� − �‖ + ��][�‖�� − �‖

+ �‖�� − ���‖ + �‖� − ��‖] + �� 

≤ (1 − ��)‖�� − �‖ + ���‖�� − �‖ + 

�� 

≤ (1 − �� + ���)‖�� − �‖ + �� 

by definition 

�� = (1 − ��)�� + ����� 

≤ (1 − �� + ���)‖[(1 − ��)�� +

�����] − �‖ + �� 

≤ (1 − �� + ���)‖[(1 − ��)��] − �‖

+ ‖[�����] − �‖ + �� 

≤ (1 − �� + ���)(1 − ��)‖�� − �‖ 

+��‖��� − �‖ + �� 

by (5), we have �� 

≤ (1 − �� + ���)(1 − ��)‖�� − �‖+��[�‖�� −

�‖ + �‖�� − ���‖ + �‖� − ��‖]+ �� 

≤ (1 − �� + ���)(1 − ��)‖�� − �‖ +

���‖�� − �‖+ �� 
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≤ (1 − �� + ���)(1 − �� + ���)‖��

− �‖ +  �� 

by Lemma 1 and the fact that � + � + � <

1,   ∑ ��, ��
�
��� = ∞. 

lim�→� �� = 0 and lim�→�‖�� − �‖ = 0, implies 

‖�� − �‖ = 0. Hence, �� = � 

but �� ≈ ��, therefore, �� = �. ∎  

Theorem 3 

Let � be a normed linear space and �: � → � be a 

mapping satisfying (5) with (�(�, �) = ‖� − �‖). 

Suppose � has a fixed point �. Let �� be arbitrary 

element but fixed in � and define {��}���
�   as (4), 

where {��}  is a sequences in [0,1] such that 0 <

�, � ≤ ���� for some �, �. Let {��} be any sequence 

in � satisfying �� = ‖���� − ���‖and �� =

(1 − ��)�� + ���. Then, {��} converges strongly to 

� and is �-stable. 

Proof:  

  Let �(�, ��) = ��� where, �� = (1 − ��)�� + ��� 

then �� = ‖���� − �(�, ��)‖ 

therefore, 

‖���� − �‖ = ‖���� − ���)‖ + ‖��� − �‖ ≤ �� +

‖��� − �‖ 

≤ [�‖�� − �‖ + �‖�� − ���‖ + �‖� − ��‖] + �� 

≤  �‖�� − �‖ + �� 

 hence 

�� ≤ �‖[(1 − ��)�� + ���] − �‖ + �� 

≤ �‖[(1 − ��)��] − �‖ + ‖��� − �‖ + �� 

≤ �(1 − ��)‖�� − �‖ +�‖��� − �‖ + �� 

≤ �(1 − ��)‖�� − �‖ +�[�‖�� − �‖ +

�‖�� − ���‖ + �‖� − ��‖] + �� 

≤ �(1 − ��)‖�� − �‖ + ��‖�� − �‖+ �� 

≤ [�(1 − ��) + ��]‖�� − �‖ + �� 

applying Lemma 1 and the fact that � + � + � < 1, 
∑ ��

�
��� = ∞, lim�→� �� = 0, lim�→�‖�� − �‖ = 0, 

implies, ‖�� − �‖ = 0 and �� = �. But, �� ≈ ��, 
therefore,  �� = �. ∎. 
 

V. DISCUSSIONS 

The stability analysis of S-Iteration, Thiawan iteration and 
Picard-Mann iteration were shown and proved by means of 
Simeon Riech contractive condition.  

VI. CONCLUSION  

The result in this work obviously generalizes the results 
of several authors.  
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