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Abstract — Generalized method of moments (GMM)
estimation has been popular as a major tool for eliciting
inference from different sets of data in econometrics in the
last two decades. It encompasses most of the common
estimation methods, such as maximum likelihood, ordinary
least squares, instrumental variables, and two-stage least
squares. The GMM approach is applicable to economic
theory where orthogonality conditions that can serve as such
moment functions occur as a result of optimization. Recent
developments in empirical likelihood (EL) estimators are also
discussed and applied to the analyses of econometric panel
data for the purpose of comparison with the GMM
estimators. The criteria used for comparison are the Mean
Square Error (MSE), the Mean Absolute Error (MAE) and
the Median Absolute Error (MedAE). Finally, the results
from the simulated data showed that the EL estimators are
more efficient when error term of the applied model is non-
normal and the model is basically non-linear.

Keywords - Generalized Method of Moments(GMM),
Empirical Likelihood (EL) Estimators, Panel Data, Qptimization.

I. INTRODUCTION

Efficient estimation of regression/model)is a crucial stage
in model building. If the parameters of a regression model
are efficiently computed, th¢ inferences drawn from such
model would generally beyreliable. However, methods to
adopt to estimate (the (parameters of regression models
largely depend on the structure of the data at hand. While
the method of Least Squares (LS) might be desirable it the
data are crosg-sectional, this method might be grossly
inefficient if the,panel or longitudinal data are involved
especially “when some of the assumptions that govern
efficient use of LS method is violated by the data.

In an attempt to determine the goodness of some of
the estimators of regression model, this study examines
the performances of Empirical Likelihood (EL) and
Generalized Method of Moments (GMM) for estimating
regression model with panel data.

II. EMPIRICAL LIKELIHOOD (ELZ) AND GENERALIZED
METHOD OF MOMENTS (GMM) ESTIMATORS

EL estimator can be thought of as the minimizer of the
“likelihood” distance*between the empirical distribution
and the distributionsstpported on the sample, satisfying
a given constrdint. The empirical likelihood approach
(EL) suggested by Owens et al (1988) and Owens
(1991), Qin and”Lawless (1994), and Mittelhammer et
al. . (2000) provides another way to estimating the
unknewn “parameters in a moment equation. The
moment'equations can be interpreted as representing the
expectation of the M dimensional unbiased vector
estimating function

c c
h(pt 5pz+l ’St ’Zi & C) :{|:p’ _Et _a(a _zbS; >|:pt+l _Miﬂll}
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the information was combined in the unbiased
estimating functions with the concept of empirical
likelihood to define an empirical likelihood function for

(a,c). Maximizing the empirical likelihood function

yields maximum empirical likelihood (MEL) estimates.
The first-order asymptotic sampling properties of the
MEL estimator are similar to those for parametric
likelihood  methods. The  exposition follows
Mittelhammer et al, (2000).

According to Mittelhammer et al (2000), the
concept of empirical likelihood begins with the joint

T
empirical probability distribution HHV , that is

supported on the sample data. The parameter V, denotes
the probability of observing the t#th sample outcome,
{pt, pM,St,Zt}. To define the value of the empirical

likelihood function for (OL,C), the v, are chosen to

T
maximize Hmvr , subject to the constraints defined
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by the moment conditions . Since the V,'s represent a

probability distribution, the maximization problem is

T
subject to the additional constraints th =1 and
t=1
v, >0 V. The maximization procedure assigns the
maximum probability possible to the sample outcome
actually observed, subject to the information represented
by the moment equations. The moment equations link
the data, the population distribution, and the parameters.
the
moment equations can be represented empirically as the
(M X l) vector equation

Using the empirical probabilities V

t°

T

Z "zh(p,sPM,S,,zl,(x,c)
=1

a c c
= Z; Vf{{pf TS afa- 255,)[Pm —MHZ,} =0,

)

with the observations ranging from 1 to 7. Using a

T
logarithmic transformation of HHVT and scaling by

1/T, the constrained maximization problem can then
be defined as

1
? ln(LEL (a’ D Py S, Z))

=max, [% Z; ln(v‘)

S~t~z, Ivh(p,,p, »8,z,a,¢)=0and

et]
3)

The Lagrange function assgciated With the constrained
maximization problem camybe represented as

s £ 315 5.5,
“4)
To”solve for (a,c), a specific functional form for the

log=empirical likelihood must be discovered.

The first order conditions with respect to the V,'s are

oL(v,n,A) 11 N
(;\?):Tv['?]—;ﬂ’h (pt’pr+1’S Zmr’a C)ZO, Vt.

)

Therefore,

Z; v, —aL(;’Vn’i) = %T -n=0. (6)

With 77 =1 and solving for the V, from the firstsorder

conditions OL/ av, =0 yields the optimalsweights V

t

as a function of &, cand 4 :

a C,i |:T(Z ™ m(pt’pt+1’S Z,,50, C)+lj:|_
(7

Therefore,
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From (2.48), the multipliers A are defined as a solution
to an implicit function of (0( , c),

1< 1
2 = — S =0
(@) afg[TZ;(IHL’h(P,,P,H,S,,z,,a,c)}’(pl’pw ) }
©)

Substituting 4 (a,c) into (2.52) defines the optimal

empirical probabilities evaluated at (a R C) as

vieeAac) [Zﬂ (P2 m,,mc)ﬂﬂ
.(10)

Finally, substitution of the optimal empirical
g, . . . . T
probabilities into the objective function Z;:l ln(vt)
yields the expression for the log-empirical likelihood

function evaluated at (0( ,C

h{Lﬂ(%c’n,lzmSﬂz))=—er{T(l(046)”(n,n+1,5,,z,046)+1ﬂ'(1 D
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The maximum empirical likelihood (MEL) estimator of
(a,c) is defined by choosing the value of (a,c) that

maximizes the log-empirical likelihood function.

Qin and Lawless (1994) and Mittelhammer et al.
(2000) noted two principal ways in which the empirical
likelihood solution may be computed. First, the optimal

parameters (a R c) and the Lagrange multipliers 4 may

be simultaneously selected to maximize the empirical
likelihood function. This problem is defined as:

Lvi2)= = 3 76 0(p 1,15 2 tc) 1]
(12)

Qin and Lawless (1994) showed that the MEL estimator
is consistent and asymptotically normal under general
regularity conditions. The present example satisfies the
conditions of the twice continuous differentiability of

h(pt,pM,St, 2,0, C) with respect to (a,c¢) and the
boundedness of A and its first and second derivatives,
both in the neighborhood of the true parameter vector
(Ot,c)o, and the requirement that the row rank of

Elon(p,. p,1.8 2, a,¢)/8la,c) | eaqual the

[
number of parameters to be estimated. The covariance
matrix 2, of the limiting normal distribution had béen
consistently estimated as:

M

S, L ab
[[ 5, P P Sz ‘”)\‘ ,H}[Zv,h(p,,p,.wS,,z,,a,v)h(p,,pm,S,,z.,a,v)}

=] o(a c)

where the 12 ’s are the MEL estimates of the empirical

EL> EL and

probability distributiof, V¥ using &
i, =i(a

EL’ EL)

In recent (\years, one step estimators called
”generalized empirical likelihood” (GEL) estimators
(Smithy 1999) began to gain attention as
theoretically attractive alternatives to GMM. These
estimators are based on information theoretical
considerations and include the empirical likelihood
(Owen, 1991; Qin and Lawless, 1994) and
exponential tilting (Kitamura and Kermanshah,
1983) estimators, together with an entire class of
minimizers of certain divergence criteria, continuous
updating CU (Hansen et al, 1996), and other members.

It has been established that the first order
asymptotic properties of GEL estimators are
identical to those of GMM estimators (Smith,
1999). Moreover, it turns out that GEL estimators
have certain advantages related to second order
asymptotic properties and thus are expected to
have better finite sample behaviour. In particular,
Bryan and Whitney (2000) found that inga cross
sectional context, the GEL estimators do noty,have
some components of the second order.biasithat are
characteristic of GMM estimators ( resulting from
estimating the optimal linear combinatien of moment
conditions at the preliminary.gstep.) The empirical
likelihood (EL) estimator is/the most distinctive in
this respect in that itsgbias™is the smallest, and
moreover, its bias corrécted yversion is second order
asymptotically efficient.) /This property makes the
class of GEL estimators especially efficient in
numerous statienary” time series models typically
estimated by GMM, with wide possibilities of
selecting instruments.

This research work focuses on semi-parametric non-
linear{ modelling of panel data when the normality
assumption of the error term is violated. Multicollinearity
among the predictors and the unobserved heterogeneity
variable are also incorporated into the proposed model.
Three estimators of semi-parametric models namely;
Continuously Updating (CU), Empirical Likelihood (EL)
and Exponential Tilting (ET) were employed using some
smoothing kernel parameter values and compared with the
Ordinary Least Square (OLS) and Generalised Method of
Moments (GMM) estimators using the Mean Square Error
(MSE), Mean Absolute Error (MAE) and Median Absolute
Error (MedAE) criteria.

III. METHODOLOGY

A semi-parametric non-linear (SPNL) model that is
applicable to fitting panel data was used with the
incorporation of multicollinearity among the predictors
and the latent variable under the violation of an error
assumption structure. The error term of the model is
non-normal. The model is given as equation (14)

Vi = BoefrPrXiictBap2XaictPaai+Uic, i=1..,n
t=1,..,T. (14)

Thus,

log(yit) = logBo + B1p1X1it + B2p2X2ie + Bsa; +

Uit (15)

where,

Vi 18 the response variable,
X1 and Xy, are the predictors,
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Bo s the intercept,

B; s the slope

U;; isthe idiosyncratic error term,

a; is the unobserved heterogeneity variable on Uy,
pi = cor(Xq, ;)

(16) where p; is the correlation between the predictor,
X,;¢ and the unobserved heterogeneity variable, a; and
p2= cor(Xp, ;)

17 where p, is the correlation between the predictor,
X, and the unobserved heterogeneity variable, «;.
The linearized model can be re-written as:
log(yit) = logp, + 315%3 + BaXzie + Bzt + Uy
where, for matrix Z; defined by

zi- @ x1®[, 1]

X7 is the second column of Z7.
Similarly, for matrix Z; defined by
. 1 p
z; =10, %1 ®|) 1]

X is the second column of Z; and
& represents the kronecker product of the matrices.
3.3 Simulation Scheme

In order to simulate data for use in this thesis, the
following schemes were designed for the generation of the
panel data used for parameter estimation from the
proposed model.

U, ~exp(0)
(19)

X,, ~exp(0)

(20)

X,, ~exp(0)
(2D

o, = 1, if there is there exists the'ufiobserved attribute
a; = 0, if the unobserved attfibute is not present.

The following valties fyere jused for the Monte Carlo
Simulation:

The Samplé€ sizes and time points investigated are:
n=20,n=50,n=100,n=200and n=300; T=5,T =
15,and T =30 21

with the following values of the correlations among X lir >

X,, and

p = 0.1 and p 0.8.
(22)

Parameter estimations were replicated at 1000.

IV. RESULTS OF THE SIMULATIONS

The following results were obtained from the simulated
data.

Table 1: Mean Square Error (MSE) of the Results when T
=5

Sample Sizes
p Estimator
20 50 100 200 300
LSE 1276334 0.988102 0.819613 0.608762 0417197
GMM 1.276444 0.988302 0.819613 0.608672 0417197
0.1 CUE 1.204235 0.998265 0.832657 0.615811 0.409761
EL 1.276506 0.988926 0.820532 0.608356 0.404376
ET 1276394 0.988042 0.81903 0.60816 0.40426
LSE 5.81662 2476 1.943 1.836 1.406
GMM 5.711252 2479197 1.645623 1.660778 141544
0.8 CUE 5436212 1.462 1.844952 1.666882 1413772
EL 5301173 2.945781 1.847553 1.660835 1416301
ET 5.298872 2.57924 1.762599 1.660739 141358

Table2: Mean Absolute Error (MAE) of the Results when

T=5
Sample Sizes
p Estimator
20 50 100 200 300
LSE 1430703 1.380909 1171252 1.097486 1.045386
GMM 1.430703 1.380909 1171252 1.097486 1.088786
0.1 CUE 1.463916 1.413074 1.190009 1.241396 1.215096
EL 1.430878 1.380941 1171329 1.097364 1.075464
ET 1.43087 1.380882 1171552 1.097265 1.081165
LSE 2.125321 1.695 1.488 1.416 1.284
GMM 2.131742 1.671212 1.458731 1.418325 1.164623
0.8 CUE 2.018099 1.613935 1.509351 1.430378 1.177663
EL 1.89901 1.609929 1398725 1368636 1.314873
ET 1966659 1.671185 1.490888 1.418308 1.364813
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Table 3: Median Absolute Error (MedAE) of the Results Table 6: Median Absolute Error (MedAE) of the Results
when T =5 when T =15
Sample Sizes . Sample Sizes
p Estimator P
20 50 100 200 300 20 50 100 200 300
ISE 1395035 1319298 113636 1028548 0.958548 LSE 1.324502 1.269871 1.186344 1.038224 0.838224
GMM 1.324502 1.269871 1.186344 1.008224 0.838224
GMM 1395035 | 1319298 113636 | 1028548 | 0953348
CUE 1.331551 1.278116 1.194936 0.994418 0.854418
0.1 CUE 1403067 | 1325391 T139646 | 1035193 | 0949458
0.1 EL 1.324113 1.270042 1.186419 1.038393 0.838393
EL 1395475 | 1318841|  LI35171| 1029078 0.94469
ET 1.325229 1.270616 1.185578 0.979509 0.839509
ET 1395064 | 1319611 136032 | 1028462 0945222 — — s = = o
LSE 2582 2241 1323 12627 L2 GMM 2776578 | 2424344 1424935 1322366 1208393
GMM 2582178 2239344 1.320135 1.265296 1.132853 CUE 2.890272 2.574447 1.42316 132977 1207947
0.8
0.8 CUE 2.823572 2.532447 132416 1.27242 1.132917 EL 2.776163 2.413809 1.426147 1.321439 1.207656
EL 2.581663 2.226809 1.321547 1.265369 1.132586 ET 2.752363 2423825 1.415905 1.322054 1.20796
ET 2579863 | 2238825 | 1317005 | 1264994 1.13296 }"’
Table 7: Mean Square r (MSE) of the Results when T
Table 4: Mean Square Error (MSE) of the Results when T N e =30
— Sample Size
=15 . -
Sample Sizes 20 50 100 200 300
P
20 50 100 200 300 LSE 1.435222 1.125783 0.993589 0.898495 0.875495
LSE 1261144 1146923 1061055 1021912 1.005927 GMM 1435222 1125783 0.993589 | 0.898495 | 0.875495
G L26Ha LM | 1061053 | LOZIRT ] L00s9aT CUE 1437934 | 1115541 TOI4183 | 0909147 | 0896147
CUE 1.29889 1.179589 1.161566 1.138896 1.131896
0.1 EL 1.445748 1.125851 0.993674 0.898581 0.875581
0.1 EL 1.261137 1.180427 1.060998 1.021864 1.005864
ET 1.44526 1.131275 0.993672 0.898166 0.875166
ET 1.258371 1.146939 1.060966 1.021873 1.005873
LSE 3.49692 3485 1957 1802 372 LSE 1.3947 1.248 L1511 1.1033 1.0531
GMM 5410512 2496197 1658713 1.637878 1.01544 GMM 1394632 1311094 1203674 1128333 1083115
CUE 5.084882 1.466 1.627962 1.518982 1.104472 » CUE 1.513319 1.30012 1.203063 1.134654 1.083272
08 08
EL 5.070623 2952551 1.861643 1.638835 1.026301 EL 1.394486 1.301852 1.203632 1.128379 1.083272
e s . e 1.657939 S8 ET 1394369 1314909 1203485 1128296 1083078
Table 5: Mean Absolute E%rorl(;\/[AE)\fr sults when Table 8: Mean Absolute Error (MAE) of the Results when
— i T=30
) — Sample Sizes Sample Sizes
2 30 100 20 30 ’ e 20 50 100 200 300
LSE 1484820 | 1334989 | 1248486 | 0.830063 | 0.600063 LSE 1627827 1242042 1168945 |  L.119331 1.090331
GMM 1.484829 1.334989 1248486 0.830063 0.600063 GMM 1.627827 1242042 1.168945 1119331 1.090331
CUE 5.404786 1.362442 1.298517 0.857282 0.627282 CUE 1.62964 1.240004 1186122 1.107139 1.057139
0.1 EL 1484763 | 1335027 | 1248405 | 0.830049 | 0.600049 01 EL 1627692 | 1242526 | 1169065 | L1953 |  1.090513
ET 1484524 | 1334912 | 1248645 | 0830368 | 0600368 ET 1630139 | 1244678 | 1169017  L119783 | 1090783
LSE 2159521 1.784 1514 1463 1321 LSE 1772 1675 1418 1316 1301
GMM 2212642 1.717912 1.469791 1437176 1.230023 GMM 1.772322 1.651212 1.418731 1.318325 1.288623
CUE 2.10209 1735635 1520411 1433381 1242863 os CUE 1.818199 1.713935 1409351 1332378 1.301663
08 :
EL 195361 | 1691229 | 1412735 | 1380366 | 1380213 . 177209 L4929 14I8T25 | 1318636 | 1288873
0 e | ssms | iwem | iann T 1a9n ET 1773497 | 16351185 | 1416888 | 1318308 | 1288713
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Table 9: Median Absolute Error (MedAE) of the Results

when T =30
Sample Sizes
p Estimator
20 50 100 200 300
LSE 1521861 1.178828 1.13636 0.930424 0910424
GMM 1521861 1.178828 113636 0.924236 0910424
CUE 1.511465 1.164758 1.139646 0.931232 0911232
0.1 EL 1.521539 1.178627 113517 0.925544 0.909544
ET 1.530193 1.179961 1.136032 0.927336 0911336
LSE 1.682 1.621 1323 12627 L1321
GMM 1.682178 1.609344 1.320135 1.265296 1.132853
CUE 1.683572 1.655447 131716 1.27142 1.140217
" EL 1681663 1.625819 1.321547 1.265369 1132586
ET 1.679863 1.608825 1.317005 1.264994 1.13296

V. DISCUSSION OF THE RESULTS

Tables 1 to table 9 showed that the Empirical Likelihood
Estimators have the least errors of estimation more often

than the Generalized Methods of Moments Estimators.

VI. CONCLUSION

The Empirical Likelihood Estimators performed better t\
the

the Generalized Methods of Moments Estimators in

estimation of parameters using a semi-parametric model

from simulated sets of panel data.
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