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Abstract — Generalized method of moments (GMM) 
estimation has been popular as a major tool for eliciting 
inference from different sets of data in econometrics in the 
last two decades. It encompasses most of the common 
estimation methods, such as maximum likelihood, ordinary 
least squares, instrumental variables, and two-stage least 
squares. The GMM approach is applicable to economic 
theory where orthogonality conditions that can serve as such 
moment functions occur as a result of optimization. Recent 
developments in empirical likelihood (EL) estimators are also 
discussed and applied to the analyses of econometric panel 
data for the purpose of comparison with the GMM 
estimators. The criteria used for comparison are the Mean 
Square Error (MSE), the Mean Absolute Error (MAE) and 
the Median Absolute Error (MedAE). Finally, the results 
from the simulated data showed that the EL estimators are 
more efficient when error term of the applied model is non-
normal and the model is basically non-linear.  

 
 Keywords - Generalized Method of Moments(GMM), 

Empirical Likelihood (EL) Estimators, Panel Data, Optimization.  
 

i. Introduction  

Efficient estimation of regression model is a crucial stage 
in model building. If the parameters of a regression model 
are efficiently computed, the inferences drawn from such 
model would generally be reliable. However, methods to 
adopt to estimate the parameters of regression models 
largely depend on the structure of the data at hand. While 
the method of Least Squares (LS) might be desirable it the 
data are cross-sectional, this method might be grossly 
inefficient if the panel or longitudinal data are involved 
especially when some of the assumptions that govern 
efficient use of LS method is violated by the data.  

In an attempt to determine the goodness of some of 
the estimators of regression  model, this study examines 
the performances of Empirical Likelihood (EL) and 
Generalized Method of Moments (GMM) for estimating 
regression model with panel data.   
 

II. EMPIRICAL LIKELIHOOD (EL) AND GENERALIZED 

METHOD OF MOMENTS (GMM) ESTIMATORS 

EL estimator can be thought of as the minimizer of the 
“likelihood” distance between the empirical distribution 
and the distribution supported on the sample, satisfying 
a given constraint. The empirical likelihood approach 
(EL) suggested by Owens et al (1988) and Owens 
(1991), Qin and Lawless (1994), and Mittelhammer et 
al. (2000) provides another way to estimating the 
unknown parameters in a moment equation. The 
moment equations can be interpreted as representing the 
expectation of the M dimensional unbiased vector 
estimating function 
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the information was combined in the unbiased 
estimating functions with the concept of empirical 
likelihood to define an empirical likelihood function for 

 c, . Maximizing the empirical likelihood function 

yields maximum empirical likelihood (MEL) estimates. 
The first-order asymptotic sampling properties of the 
MEL estimator are similar to those for parametric 
likelihood methods. The exposition follows 
Mittelhammer et al, (2000). 

According to Mittelhammer et al (2000), the 
concept of empirical likelihood begins with the joint 

empirical probability distribution  

T

1t t
ν   that is 

supported on the sample data. The parameter tv  denotes 

the probability of observing the tth sample outcome, 

 
tttt Spp z,,, 1 . To define the value of the empirical 

likelihood function for  c, , the tv  are chosen to 

maximize 

T

1t t
ν , subject to the constraints defined 



Professional	Statisticians	Society	of	Nigeria 
																																									Edited Proceedings of 2nd International Conference																								                   Vol. 2, 2018 

334 

 

 
© 2018, A Publication of Professional Statisticians Society of Nigeria 

 

by the moment conditions . Since the t
v 's represent a 

probability distribution, the maximization problem is 

subject to the additional constraints 1
1




T

t

t
v  and 

tvt     0 . The maximization procedure assigns the 

maximum probability possible to the sample outcome 
actually observed, subject to the information represented 
by the moment equations. The moment equations link 
the data, the population distribution, and the parameters.  

Using the empirical probabilities t
v , the 

moment equations can be represented empirically as the 

 1M  vector equation  
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with the observations ranging from 1 to T. Using a 

logarithmic transformation of 

T

1t t
ν  and scaling by 

T/1 , the constrained maximization problem can then 
be defined as  
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The Lagrange function associated with the constrained 
maximization problem can be represented as 
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To solve for  c, , a specific functional form for the 

log-empirical likelihood must be discovered. 

The first order conditions with respect to the s'
t

v  are 
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With 1  and solving for the t  from the first order 

conditions 0/  tvL  yields the optimal weights t  

as a function of  , c and λ : 
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From (2.48), the multipliers λ  are defined as a solution 

to an implicit function of  c, ,  
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Substituting  c,λ  into (2.52) defines the optimal 

empirical probabilities evaluated at  c,  as   
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Finally, substitution of the optimal empirical 

probabilities into the objective function   

T
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ln  

yields the expression for the log-empirical likelihood 

function evaluated at  c, : 
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The maximum empirical likelihood (MEL) estimator of 

 c,  is defined by choosing the value of  c,  that 

maximizes the log-empirical likelihood function.  
Qin and Lawless (1994) and Mittelhammer et al. 

(2000) noted two principal ways in which the empirical 
likelihood solution may be computed. First, the optimal 

parameters  c,   and the Lagrange multipliers λ  may 

be simultaneously selected to maximize the empirical 
likelihood function. This problem is defined as: 

       
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.                          (12) 

Qin and Lawless (1994) showed that the MEL estimator 
is consistent and asymptotically normal under general 
regularity conditions. The present example satisfies the 
conditions of the twice continuous differentiability of 

 cSpp
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  with respect to  c,  and the 

boundedness of h and its first and second derivatives, 
both in the neighborhood of the true parameter vector 

 0,c , and the requirement that the row rank of 

      ctttt ccSppE ,1 ,/,,,,,    zh  equal the 

number of parameters to be estimated. The covariance 

matrix  of the limiting normal distribution had been 

consistently estimated as:  
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where the t̂ ’s are the MEL estimates of the empirical 

probability distribution  , using 
ELEL

ĉ,̂  and 

 
ELELEL

ĉ,ˆˆ λλ  . 

In recent years, one step estimators called 
”generalized empirical likelihood” (GEL) estimators  
(Smith, 1999) began to gain attention as 
theoretically attractive alternatives to GMM. These 
estimators  are based on information  theoretical  
considerations  and include the empirical likelihood 
(Owen, 1991; Qin and Lawless, 1994) and 
exponential tilting (Kitamura and K e r m a n s h a h ,  
1983) estimators, together  with an entire  class of 
minimizers of certain divergence criteria, continuous 
updating CU (Hansen et al, 1996), and other members.  

It has been established that the first order  
asymptotic properties  of GEL estimators  are 
identical  to those  of GMM estimators (Smith,  
1999).  Moreover, it turns  out  that  GEL estimators  
have certain  advantages related  to second order  
asymptotic properties  and  thus  are expected  to 
have better  finite sample behaviour.  In particular, 
Bryan and Whitney (2000) found that  in a cross 
sectional context, the GEL estimators  do not have 
some components  of the second order bias that  are 
characteristic of GMM estimators  resulting from 
estimating the optimal  linear combination of moment 
conditions  at  the  preliminary  step.   The  empirical  
likelihood (EL)  estimator  is the  most  distinctive  in 
this  respect  in that  its bias is the  smallest,  and  
moreover,  its bias corrected  version is second order 
asymptotically efficient. This property makes the 
class of GEL estimators especially e f f i c i e n t  in 
numerous  stationary time series models typically 
estimated  by GMM, with wide possibilities of 
selecting instruments. 

This research work focuses on semi-parametric non-
linear modelling of panel data when the normality  
assumption of the error term is violated. Multicollinearity 
among the predictors and the unobserved heterogeneity 
variable are also incorporated into the proposed model. 
Three estimators of semi-parametric models namely; 
Continuously Updating (CU), Empirical Likelihood (EL) 
and Exponential Tilting (ET) were employed using some 
smoothing kernel parameter values and compared with the 
Ordinary Least Square (OLS) and Generalised Method of 
Moments (GMM) estimators using the Mean Square Error 
(MSE), Mean Absolute Error (MAE) and Median Absolute 
Error (MedAE) criteria. 

III. METHODOLOGY 

A semi-parametric non-linear (SPNL) model that is 
applicable to fitting panel data was used with the 
incorporation of multicollinearity among the predictors 
and the latent variable under the violation of an error 
assumption structure. The error term of the model is 
non-normal. The model is given as equation (14)  

 ��� = ���
��������������������������; � = 1,… , �; 

� = 1,… , �.                       (14) 
Thus,                   
 ���(���) = ����� + �������� + �������� + ���� +
���		                                                   (15) 

where, 
 ���  is the response variable, 
����		and		���� are the predictors, 
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��   is the intercept,  
 ��     is the slope 
���			is the  idiosyncratic error term, 

 ��		is the unobserved heterogeneity variable on ���, 
ρ1    =   ���(����, ��)                                                                                        

(16)   where ρ1 is the correlation between the predictor, 
���� and the unobserved heterogeneity variable, �� and                                                                                      

ρ2 =   ���(����, ��)                                                                                                           
(17)       where ρ2 is the correlation between the predictor, 

���� and the unobserved heterogeneity variable, ��. 
The linearized model can be re-written as: 

���(���) = ����� + ������
∗ + ������

∗ + ���� + ���                                                              
(18) 

where,  for matrix ��
∗

 defined by  

 ��
∗

 =   [�,	��]  �
1 �
� 1

�, 

��
∗ is the second column of ��

∗. 
Similarly, for matrix ��

∗ defined by  

��
∗	 = [�,	��]  �

1 �
� 1

� 

��
∗ is the second column of ��

∗ and 

  represents the kronecker product of the matrices.                                                                              
3.3 Simulation Scheme 

In order to simulate data for use in this thesis, the 
following schemes were designed for the generation of the 
panel data used for parameter estimation from the 
proposed model.   

 
)exp(~ itU

                                                                                           
(19)

 

)exp(~1 
it

X
     

                                                                (20)
 

)exp(~2 itX
                                                                                                      

(21)
 

1i , if there is there exists the unobserved attribute 

0i , if the unobserved attribute is not present.      

The following values were used for the Monte Carlo 
Simulation:  

The Sample sizes and time points investigated are: 
n = 20, n = 50, n = 100, n = 200 and n = 300; T = 5, T = 

15, and T = 30                                 (21) 

with the following values of the correlations among 
it

X1 , 

itX 2  and i  

ρ = 0.1        and         ρ = 0.8.                                                                
                            (22)   
Parameter estimations were replicated at 1000. 

IV. RESULTS OF THE SIMULATIONS 

 
The following results were obtained from the simulated 
data. 

Table 1: Mean Square Error (MSE) of the Results when T 

= 5   

 

Table2: Mean Absolute Error (MAE) of the Results when 
T = 5 
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Table 3: Median Absolute Error (MedAE) of the Results 
when T = 5 

 

Table 4: Mean Square Error (MSE) of the Results when T 
= 15 

 

 
 

Table 5: Mean Absolute Error (MAE) of the Results when 
T = 15 

 

 
 

Table 6: Median Absolute Error (MedAE) of the Results 
when T =15 

 

Table 7: Mean Square Error (MSE) of the Results when T 
= 30   

 

 

Table 8: Mean Absolute Error (MAE) of the Results when 
T = 30 
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Table 9: Median Absolute Error (MedAE) of the Results 
when T = 30 

 
 

V. DISCUSSION OF THE RESULTS 

Tables 1 to table 9 showed that the Empirical Likelihood 
Estimators have the least errors of estimation more often 
than the Generalized Methods of Moments Estimators. 

VI. CONCLUSION   

The Empirical Likelihood Estimators performed better than 
the Generalized Methods of Moments Estimators in the 
estimation of parameters using a semi-parametric model 
from simulated sets of panel data. 
 

References 

Bryan, W. B. and Whitney, N. (2000). GMM, Efficient 
Bootstrapping and Improved Inference.  Journal 
of Business & Economic Statistics, 20, 4, 507-
517.   

Kitamura, R. and Kermanshah, M. (1983). Identifying time 
and history dependencies of activity choice, 
Transportation Research Record, 944, 22-30. 

Owens, W.B., P.L. Richardson, W.J. Schmitz, Jr., Rossby, 
H. T. and Webb, D. C. (1988). Nine-   year 
trajectory of a SOFAR float in the southwestern 
North Atlantic. Deep-Sea Research,35 (12), 
1851–1857. 

Owens, W.B. (1991). A statistical description of the mean 
circulation and eddy variability in the             
northwestern Atlantic using SOFAR floats. 
Progress in Oceanography, 303. 

Qin, J. and Lawless, J. (1994). Empirical Likelihood and 
General Estimating Equations. The Annals of 
Statistics, 22, 1, 300-325. 

Smith, B. D. and Weber, W. E. (1999). "Private Money 
Creation and the Suffolk Banking    

             System," Journal of Money, Credit and Banking, 
Blackwell Publishing, vol. 31(3),  pages  624-59, 
August. 

Hsiao, C. (1993).  Analysis of Panel Data, Cambridge 
University Press, Cambridge, 159-164. 

Hsiao, C. (1996).  "Logit and Probit Models," in Matyas, 
L. and Sevestre, P., eds., The Econometrics of 
Panel Data: Handbook of Theory and 
Applications, Second Revised Edition.  Kluwer 
Academic   Publishers, Dordrecht, 410-447. 

Jimoh, K. and Adeleke, B. L. (2016). Robustness of Some 
Estimators to Multicollinearity in a  

              Semiparametric Nonlinear Model, IOSR Journal 
of Mathematics (IOSR-JM) e-ISSN:  

            2278-5728, p-ISSN: 2319-765X. Volume 12, Issue 
6 Ver. VI PP 48-55. 

Jimoh, K. and Yahya, W. B. (2017). Application of 
Semiparametric Non-Linear Model on Panel Data 
with Very Small Time Point, IOSR Journal of 
Mathematics (IOSR-JM) e-ISSN:  

            2278-5728, p-ISSN: 2319-765X. Volume 13, Issue 
1, Ver.4 PP 100-103. 

 


