
Professional	Statisticians	Society	of	Nigeria 
																																									Edited Proceedings of 3rd International Conference																								                   Vol. 3, 2019 

525 

 

 
© 2019, A Publication of Professional Statisticians Society of Nigeria 

 

On the Development of Four-Parameters 
Exponentiated Generalized                            

Exponential Distribution 

A. Bukoye1; G. M. Oyeyemi2 

1Department of Statistics,  
Auchi Polytechnic, Auchi, Nigeria  

2Department of Statistics,  
University of Ilorin, Ilorin, Nigeria. 
E-mail: wasiubukoye@yahoo.co1 

 
 

Abstract — In this paper, a four parameter 
Exponentiated Generalized Exponentiated exponential 
distribution is derived from Exponentiated Generalized 
Family (EGF) of distribution. Some properties of the 
distribution are studied. The distribution is found to be 
unimodal and has a decreasing and increasing hazard 
rate depending on the shape parameters. The 
expressions for the moment, median, quantile, mean 
deviation, median deviation, skewness, kurtosis, Renyi 
entropy are obtained. Some known continuous 
distributions are special cases of the new derived 
distributions. Simulation study, maximum likelihood 
estimator and real life application of the model to data, 
shows that new distribution fits better than it’s sub-
models.  

Keywords - Moment, Hazard rate, Kurtosis, Renyi Entropy, 
Unimodal, skewness, quantile function.. 

 
i. Introduction  

The exponential distribution (ED) also known as negative 
exponential distribution is a probability distribution that 
describes the time between event in a Poisson point process 
i.e. a process in which event occurs continuously and 
independently at a constant average rate. The ED is a very 
popular statistical model probably, is one of the parametric 
model most extensively used in several fields; Lemonte et 
al. (2013). The popularity of this distribution can be 
explained perhaps, by the simplicity of their cumulative 
function, which involves only one unknown parameter � >
0 and takes a simple form �(�) = 1 − ����  for � > 0 in 
addition to having constant hazard rate.  

Gompertz (1825) and Verhulst [(1838), (1845) and 
(1847)] developed several cumulative distribution functions 

during the first half of the nineteenth century to compare 
known human mortality tables and represent mortality 
growth. One of them is as follows  

�(�) = (1 − �����)�    (1) 

for � > 1
�� ���. Where �, � and � are all positive real 

numbers. In twentieth century, Ahuja and Nash (1967) also 
considered this model and made some further 
generalization. The generalized exponential distribution or 
the exponentiated exponential distribution is defined as a 
particular case of the Gompertz (1825), Verhulst Verhulst 
[(1838), (1845) and (1847)] distribution function, when ρ = 
1. Therefore, X is a two parameters generalized exponential 
random variable if it has the distribution function 

�(�: �, �) = (1 − ����)�    (2) 

and the density function.  

�(�: �, �) = ��(1 − ����)�������   (3) 

where α and λ play the role of the shape and scale parameters 
respectively. Many exponentiated families of distributions 
have appeared in the literature as generalizations of existing 
distributions. Mudholkar and Srivastava (1993) extended 
the Weibull distribution by introducing the 3-parameter 
exponentiated Weibull distribution (EWD) that has bathtub 
or monotone failure rate.  

Gupta et al. (1998) studied the general properties of 
the exponentiated families of distributions such as hazard 
function and some ordering relations. Gupta and Kundu 
(1999) defined a 2-parameter generalized exponential 
distribution, a particular case of EWD, and studied some of 
its properties, including hazard rate, moment generating 
function, distribution of sums and extreme values. They also 
compared the flexibility of the generalized exponential 
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distribution to a 2-parameter gamma distribution and a 2 
parameter Weibull distribution by studying the deep groove 
ball bearings lifetime data. They concluded that the 
generalized exponential distribution can be used as 
alternative to the 2 parameter Weibull distribution and the 
2-parameter gamma distribution. 

 Cadeiro et al. (2013) proposed a class of 
distributions by adding two parameters to a continuous 
distribution, by extending the idea first introduced by 
Lehman (1953) and studied by Nadarah and Kotz (2009). 
This method leads to a new class of Exponentiated 
generalized distribution (EG) that can be interpreted as a 
double construction of Lehmann alternative. The 
distributions extend the exponentiated type distribution and 
obtain some of its structure properties. Given a continuous 
c.d.f. G(x), we define the EG class of distributions by  
 

�(�) = [1 − {1 − �(�)}�]�   
    (4) 

and 
�(�) = ��{1 − �(�)}���[1 − {1 −
�(�)}�]����(�)     (5) 

 
where � > 0 ��� � > 0 are two additional shape 
parameters. The EG has tractable properties especially for 
simulation since its quantile function take a simple form. 
 

� = �� ��1 − �1 − �
�

��

�

�

��     

    (6) 
where ��(�) is the baseline quantile function. 
 To illustrate the flexibility of EG model, 
Cordero et al. (2013) applied EG to some well-known 
distribution such as the Frechet, normal, gamma and 
Gumbel distributions, with several properties for the EG 
class, which provide motivations to adopt this generator. 
The two extra parameters � ��� � in the density can control 
both tail weight, and allow generation of flexible 
distribution, with heavier or lighter tails, as appropriate. 
There is also an attractive physical interpretation of the EG 
model when � ��� � are positive integers see Cordeiro and 
Lemonte (2014). The EG family properties have been 
explored in recent works. Here, we refer to the papers: 
Cordeiro et al. (2014), Cordeiro and Lemonte (2014), 
Elbatal and Muhammed (2014), Oguntunde et al. (2014), da 
Silva et al. (2015), de Andrade et al. [(2016) and (2015)] 
Cordeiro et al. (2017), which used the EG class to extend the 
Burr III, Birnbaum-Saundersm, inverse Weibull, inverted 
exponential, generalized gamma, Gumbel, extended 
exponential, standardized half-logistic distributions 
respectively. 

The rest of the paper is organized as follows. In Section 2 
we define the Exponentiated Generalized Exponentiated 
Exponential (EGEE) distribution and outline some special 
cases of the distribution, the graphs of probability density 
function (pdf), cumulative distribution function (cdf) and 
hazard functions of proposed distribution and its sub-
distributions are obtained. In section 3, some mathematical 
properties and limit behavior are derived, in section 4, 
estimation of the unknown parameters by method of 
maximum likelihood and information’s criterion, in section 
5, we provide some simulated result base on the 
mathematical properties and it real life application. We 
conclude in section 6 base on some significant result on the 
EGEE distribution. 

ii. Methodology 
In this section we define and formulate the proposed model. 

A Proposed Distribution (EGEE) 
We defined the Exponentiated Generalized Exponentiated 
Exponential (EGEE) cumulative distribution from (4) as; 
 

�(�) = [1 − {1 − (1 − ��
�

�)�}�]�           
(7) 

 
By inserting (2) in (4) the corresponding p.d.f (5) is 
 

�(�) =
���

�
��

�

�(1 − ��
�

�)���{1 − (1 −

��
�

�)�}���[1 − {1 − (1 − ��
�

�)�}�]���                         
(8) 

 
The hazard function is; 
 

ℎ(�)

=

���
�

��
�
�(1 − ��

�
�)���{1 − (1 − ��

�
�)�}���[1 − {1

1 − [1 − {1 − (1 − ���/�)�}�

(
9
) 

The survival function is; 

�(�) = 1 − [1 − {1 − (1 − ��
�
�)�}�]�  (10) 

 
B  Special Case of EGEE Distribution  

 The Exponential distribution (E) with scale 
parameter � is a special case of EGEE when � =
� = � = 1. 

 For � = � = 1 the EGEE gives an Exponentiated 
Exponential (EE) distribution  

 When � = 1 the EGEE gives a member of 
Exponentiated Generalized Family which is 
Exponentiated Generalized Exponential (EGE) 
distribution. 
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Table 1 Summary of EGEE and Sub-Models 

Distribution � � � � 

EGEE � � � � 

EGE � � 1 � 

EE 1 1 k � 

E 1 1 1 � 

 

III. MATHEMATICAL PROPERTIES OF THE 

PROPOSED DISTRIBUTION 

We look at the some properties of EGEE model in this 
section. 
A Properties of Exponentiated Generalized 

Exponentiated Exponential (EGEE) 

The properties of the proposed distribution will be derived 
from Exponentiated Generalized Family (EGF) distribution 
in equation 1 and 2. 

�(�) = � ��

�

���

�(�)� (11) 

 

where �� = ��(�, �) = ∑
(��)����(���)�(����)

�(�����)�(������) �!�!

�
���  

 
 Differentiating equation 12 with respect to x gives 

the pdf 
 

�(�) = � ����(�)

�

���

(�(�))��� 
  

(12) 

hence the cdf and pdf of the proposed distribution is express 
respectively as: 
�(�)

= � ��

�

���

((1

− ��
�
�)�)�                                                                                                                (13) 

and 

�(�) =
�

�
� ���

�

���

��
�
�(1 − ��

�
�)����   (14) 

B. Quantile and Median 

� = −�[��(1 − �1 − �1 − (�)
�
�}

�
�)

�
��� (15) 

������
= −�[��(1

− �1 − �1 − (0.5)
�
�}

�
�)

�
���                                               (16) 

C.  Moment of EGEE Distribution 

�� = � ���(�) ��

�

�

 (17) 

 

�� =
���

(� + 1)���
� �

(−1)�Γ(��)

Γ(�� − �) �!

�

���

���

�

���

 Γ(r

+ 1) 

   
(18) 

D. Order Statistics of EGEE 
 

∝ �

�(�, � − � + 1)

�

�
  

 

∗ � � � �(−1)�������
Γ(n − i + 1)Γ(β(q + i)

Γ(n − i + q + 1

Γ(α(p + 1) − �)Γ(k(�

�

���

�

���

�

���

���

���

(1
9) 

 
E.  Skewness and Kurtosis of the EGEE Distribution  

Galton (1883) proposed a quantile measure based approach 
for evaluating skewness while Moore (1988) did the same 
for Kurtosis. Galton’s skewness and Moor’s kurtosis is 
evaluated using the relations  
 

�. � =
Q(6/8) − 2Q(4/8) + Q(3/8) + Q(2/8)

Q(6/8) − Q(2/8)
 (20) 

 

�. � =
Q(7/8) − 2Q(5/8) + Q(3/8) + Q(1/8)

Q(6/8) − Q(2/8)
 (21) 

 
Since the Quantile function of the EGEE distribution exists 
in closed form as given in (7), then (20) and (21) can be used 
in evaluating the skewness and kurtosis of the EGEE 
Distribution.  

 

 

Figure 1 for EGEE Skewness 
 

 

Figure 2 for EGEE Kurtosis 
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The 3D plot for skewness and kurtosis were plotted using 
the quartile function of the EGEE distribution with � = � =
1 while � = � takes values from 2 to 12.  

F. Mean Deviation of EGEE Distribution 

2
��

(���)�
∑ ∑

(��)��(��)

�(����)�!

∞
��� ���

∞
��� [1 − {1 − (1 −

���/�)�}�]� − 2 ∑ ∑
(��)��(��)

�(����) �!

�
��� ���

�
���  �(�, �)        (22) 

G. Median Deviation of EGEE Distribution 

��

(���)�
∑ ∑

(��)��(��)

�(����)�!

∞
��� ���

∞
��� −

2
��

(���)�
∑ ∑

(��)��(��)

�(����) �!

�
��� ���

�
���  �(�, �)           (23) 

H. Asymptotic Behavior  

 We seek to investigate the behavior of the proposed 
model as given in Equation (8) as � → 0 and as � → ∞. This 
involves considering lim

�→�
�(�) and lim

�→�
�(�) 

lim
�→�

�(�) = lim
�→�

�
���

�
�

�
�
�(1 − ���/�)���{1 − (1

− ���/)�}���[1 − {1 − (1

− �
�

�
�)�}�]���� = 0 

lim
�→�

�(�) = lim
�→�

�
���

�
�

�
�
�(1 − ���/�)���{1 − (1

− ���/)�}���[1 − {1 − (1

− �
�

�
�)�}�]���� = 0 

These results confirm further that the proposed distribution 
has a mode (Oguntunde  
et al., 2014). 

I.  Maximum Likelihood Estimation 

In this section, we determine the maximum likelihood 
estimates (MLEs) of the parameters of the EGEE 
distribution. For a random sample ���� … . �� of size �, the 
log-likelihood function of 4 parameter EGEE distribution is 
given by 

 

� = � ln (��)

�

���

= � ��

�

���

�
���

�
��

�
�(1 − ��

�
�)���{1

− (1 − ��
�
�)�}���[1 − {1 − (1

− ��
�
�)�}�]���� 

���� + ���� + ���� − ���� − �
��

�

�

���

+ (�

− 1) � ln �1 − ��
��
� �

�

���

+ (� − 1) � ln {1 − (1

�

���

− ��
��
� )�} 

+(� − 1) � ln[1 − {1 − (1

�

���

− ��
��
� )�}�] 

��

��

=
�

�
+ � ln {1 − (1 − ��

��
� )�

�

���

}

+
(� − 1) ∑ [1 − {1 − (1 − ��

��
� )��

��� }�]��{1 − (1 − ��
��
� )�}

[1 − {1 − (1 − ��
��
� )�}�]

 

��

��
=

�

�
+ � ln [1 − {1 − (1 − ��

��
� )�

�

���

}�] 

��

��

=
�

�

+ � ln �1 − ��
��
� �

�

���

− (� − 1) �
(1 − ��

��
� )��� �1 − ��

��
� �

{1 − (1 − ��
��
� )�}

�

���

+ �(�

− 1) �
{1 − (1 − ��

��
� )�}���(1 − ��

��
� )��� �1 − ��

��
� �

[1 − {1 − (1 − ��
�
�)�}�]

�

���
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��

��
=

−�

�
+ �

��

��

�

���

− (� + 1) �
����

��
�

�� �1 − ��
�
��

�

���

+ (�

− 1) �
�(1 − ��

��
� )�������

��
�

�� �1 − �1 − ��
�
��

�

�

 

�

���

 

−(� − 1) �
��(1 − ��

��
� )�������

��
� {1 − (1 − ��

��
� )�}���

�� �1 �−1 − �1 − ��
��
� �

�

�

�

�

 

�

���

 

Solving the nonlinear system of equation of 
��

��
= 0,

��

��
=

0,
��

��
= 0 ��� 

��

��
= 0 gives the maximum likelihood 

estimates of �, �, � ��� � respectively. 

IV. APPLICATION 

In this section, the proposed EGEE distribution is used to fit 
two (2) real-life data sets and estimates obtained were used 
to compare the fitted values of EGE, EE, and E distributions, 
respectively 
 

 
Table 2: Maximum Likelihood Estimate of Parameters Standard Errors in Parenthesis, Loglikelihood and    

                Information Criteria carbon Fibers 

Models �� �� �� �� �� AIC BIC 

EGEE 
11.3312 5.8340 3.2679 9.0031 -141.318 290.6361 301.0557 

(88.1057) (45.3608) (0.8815) (15.6154)    

EGE 
2.3577 7.7871  2.327 -146.182 298.3646 306.1801 

(102.0782) (1.5042)  (100.7249)    

EE 
  7.79061 0.9868 -146.182 296.3646 301.575 

  (1.4966) (0.0851)    

E 
   0.3814 -196.371 394.7417 397.3469 

   (0.0381)    

Source: Nichols and Padgett (2006) 
Table 2 shows the reported values of log-likelihood function (LL) estimates for EGEE, EGE, EE and E distributions.  

 
Table 3: Likelihood Ratio Test (LRT) Statistic for Carbon Fibers 

Model Hypothesis LRT � − ����� 

EGEE vs. EGE ��: � = 1 ��. ��: �� �� ����� 9.7800 < 0.00001 

EGEE vs. EE ��: � = � = 1 ��. ��: �� �� ����� 9.7800 < 0.00001 

EGEE vs. E ��: � = � = � = 1 ��. ��: �� �� ����� 110.1040 < 0.00001 

Source: Nichols and Padgett, (2006) 
 
Table 3 depicts the estimated (LRT) statistic for EGEE vs EGE, EGEE vs EE and EGEE vs E distributions.  

 
Figure 3: Fitted Plot of EGEE EGE, EE and E Models on Fibers Data  
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 Figure 3 shows the histogram of the fibers data set along with fitted distributions.  

Table 4: Maximum Likelihood Estimate of Parameters, Standard Errors in Parenthesis, Loglikelihood and Information 
Criterion  Glass fibers data  

Models �� �� �� �� �� AIC BIC 

EGEE 
3.2594 45.663 7.710 2.188 -16.912 41.824 50.3971 

(2.705) (37.900) (1.6465) (0.8228)    

EGE 
64052.895 10.712  36621.219 -38.5517 83.1035 89.539 

(7278.081) (3.1496)  (6444.711)    

EE 
  31.3627 0.3828 -31.3834 66.7669 71.0532 

  (9.5330) (0.0349)    

E 
   0.6636 -88.8303 179.6606 181.8038 

   (0.0836)    

Source: Bourguinon et al. (2014). 
Table 4 shows the reported values of log-likelihood function (LL) estimates for EGEE, EGE, EE and E distributions.  

Table 5: Likelihood Ratio Test (LRT) Statistic for Glass Fibres 

Model Hypothesis LRT � − ����� 

EGEE vs. EGE ��: � = 1 ��. ��: �� �� ����� 43.2794 < 0.00001 

EGEE vs. EE ��: � = � = 1 ��. ��: �� �� ����� 28.9428 < 0.00001 

EGEE vs. E ��: � = � = � = 1 ��. ��: �� �� ����� 143.8366 < 0.00001 

Source: Bourguinon et al. (2014). 
Table 5 depicts the estimated (LRT) statistic for EGEE vs. EGE, EGEE vs. EE and EGEE vs. E distributions.  

 
Figure 4: Fitted Plot of EGEE EGE, EE and E Models on Glass Fibres Data 

Figure 4 shows the histogram of the glass fibers data set along with fitted distributions 
 
 

V. DISCUSSIONS 

Table 2 shows the reported values of log-likelihood function 
(LL) estimates for EGEE, EGE, EE and E distributions 
obtained as -141.318, -146.182, -146.182 and -196.371 
respectively with  Akaike Information Criterion (AIC)  
values of  290.6361, 298.3646, 296. 3646, and 394. 7417.  

The Bayesian Information Criterion (BIC) indicates the 
values of   301.0557, 306.801, 301.575, and 397.3469, 
respectively, for all the distributions, as mentioned above. 
The estimated result confirmed that the proposed 
distribution EGEE with values of   -141.318, 290.6361 and 
301.0557 for LL, AIC, and BIC respectively gives a better 
distribution fit for the data set. The EGE and EE distribution 
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performed equally on the data set as the likelihood values 
confirm it in Table 2. 
Table 3 depicts the estimated (LRT) statistic for EGEE vs 
EGE, EGEE vs EE and EGEE vs E distributions of reported 
values 9.7800, 9.7800 and 110.1040 respectively and the 
corresponding p-values of 0.001, 0.001 and 0.00001. The 
finding reveals that EGEE distribution is significant at 0.05 
level of significance to EGE, EE, and E distributions. Figure 
3 shows the histogram of the fibers data set along with fitted 
distributions. The theoretical density of EGEE distribution 
depicts the best spread compared to EGE, EE, and E 
distributions on the data set. 
Table 4 shows the reported values of log-likelihood function 
(LL) estimates for EGEE, EGE, EE and E distributions are 
obtained as -16.912, -38.5517, 31.3834and -88.8303 
respectively with Akaike Information Criterion (AIC)  
values of  41.824, 83.1035, 66.7669 and 179.6606.  The 
Bayesian Information Criterion (BIC) indicates the values 
of 50.3971, 89.539, 71.0532, and 181.8038, respectively, for 
all the distributions, as mentioned earlier. The estimated 
result confirmed that the proposed distribution EGEE with 
values of   -16.912, 41.824 and 50.3971 for LL, AIC, and 
BIC respectively and therefore gives the best fit for the data 
set. 

Table 5 depicts the estimated (LRT) statistic for EGEE 
vs. EGE, EGEE vs. EE and EGEE vs. E distributions of 
reported values 43.2794, 28.9428  and 
143.8366respectively  and the corresponding p-values of 
0.0001, 0.0001 and 0.000001. The finding reveals that 
EGEE distribution is significant at 0.05 level of significance 
to EGE, EE, and E distributions. 

Figure 4 shows the histogram of the glass fibers data set 
along with fitted distributions. The theoretical density of 
EGEE distribution has a better spread than its sub-
distributions on the data set. 

 

VI. CONCLUSION 

The application of the EGEE and its sub-distributions on 
Fibres and glass data in Tables 3 and 4 shows that the 
proposed model serves as a best distribution compared to its 
sub-distributions using the information criterion (AIC and 
BIC), log likelihood, likelihood ratio test and the fit 
distribution curve, while the data on precipitation in Table 
4.50 and its fitted plot on Figure 4.23, show that EGEE 
distribution can serve as an alternative and better 
distribution where the sub-distributions are applied.  
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