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Abstract 

In this study, the procedures of Bayesian estimation of the shape parameter of the Kumaraswamy distribution 
under different prior distributions are examined. The shape parameter of the Kumaraswamy distribution is 
assumed to follow noninformative prior distributions (such as the extension of Jeffrey’s prior distribution, 
Hartigan Prior distribution, and Uniform Prior distribution) and the informative prior distribution (such as 
the Gamma distribution and Inverted levy distribution) were adopted in this work. We compared the obtained 
estimates using their mean square errors under different loss functions (such as precautionary loss function, 
Squared error loss function, and Albayyati’s loss function). The results showed that the behaviour of the 
Bayesian estimations of the shape parameter of the Kumaraswamy distribution under the Squared Error loss 
function using Inverted levy prior distribution is the best among all the prior distributions considered. 

Keywords: Mean Square Error, Kumaraswamy distribution, Jeffrey’s prior, Hartigan Prior, Uniform Prior, 
Gamma distribution, Inverted levy distribution, Loss Function. 

1.0 Introduction 

Kumaraswamy(1980) proposed a new probability density function for double bounded random processes 
known as Kumaraswamy distribution. This probability distribution has a relationship with Beta distribution 
but it possesses a simple closed-form for both probability distribution function and cumulative distribution 
function. Kumaraswamy (1987) further proposed a sine-power probability density function because some of 
the well-known probability distributions like Normal, Beta, log-normal and polynomial-transformed-normal 
density functions do not fit well to hydrological data.  

The Kumaraswamy probability density function proposed by Poondi Kumaraswamy in 1980 was a more 
generalized probability distribution function for lower and upper bounded random variables. The probability 
density function and the cumulative distribution function for the Kumaraswamy distribution can be expressed 
as 

�(�; �, �) = ������(1 − ��)���        ;  0 < � < 1; � > 0; � > 0 (1) 
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                                          �(�) = 1 − (1 − ��)���                                                                        (2) 

The two parameters α and β are known as non-negative shape parameters for the Kumaraswamy distribution. 
Nadarajah (2008), the Kumaraswamy distribution is closely related to three-parameter Beta distribution. In 
this study, we are focusing on estimating the shape parameter β of this distribution. 

                                              
�

�(�,�)
�����(1 − ��)���        0 ≤ � ≤ 1; �, � > 0                           (3) 

When � = � and � = 1, Equation (1) is regarded as a power function distribution denoted as Kumaraswamy 
(q,1) .  When � = 1 and � = �, Equation (1) is regarded as a distribution of one minus that power function 
which is denoted as Kumaraswamy (1,q). Also, when � = 1 and � = 1, Equation (1) is said to follow a 
uniform distribution U(0,1) which is denoted as Kumaraswamy (1,1).  

Jones (2009) highlighted some similarities and differences between the Beta distribution and the 
Kumaraswamy distributions. The Kumaraswamy distribution has similar characteristics with Beta 
distribution but it’s easier to use than the three-parameter Beta distribution especially in a simulation study. 
Fletcher and Ponnamblam (1996), Sundar and Subbiah (1898), Ponnambalam et al. (2001) and  Seifi et al. 
(2000) have employed the application of Kumaraswamy distribution in hydrology and related areas. 

Bayesian estimation of the Kumaraswamy distribution has not been fully discussed in detail. The unknown 
parameter �  is known as a random variable from a given probability distribution, with the prior information 
about the value of the parameter of interest � to the observed data. This research work focused on obtaining 
the Bayesian estimates of the shape parameters � of the Kumaraswamy distribution under different loss 
functions and different prior distributions. 

 
 

Figure 1: Probability Distribution Function curve of the Kumaraswamy under different parameters 
combinations. 
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Figure 2: Cumulative Distribution Function Curve of the Kumaraswamy under different parameters 

combination. 

2.0 The Maximum Likelihood Estimation 

Let ��, �� … �� be a random sample of size n from a Kumaraswamy distribution in (1). Therefore the 
likelihood function of (1) is given by  

 �(�|�) ∝ ������  (4) 

 where � = ��(1 − ��
�)�� . The log-likelihood function of (1) can be expressed as 

 ����(�|�) = �log� − �� (5) 

 solving 
�[����(�|�)]

��
= 0, we obtain the Maximum Likelihood Estimator (MLE) ��  for the parameter � as 

 �� = �
�

�
�
��

 (6) 

 2.1 Bayes’ Theorem 

The Bayes’ theorem can be expressed as the conditional distribution of � given x is given as  

 ℎ�(�|�) =
�(�|�)��(�)

∫ �(�|�)��(�) ��
 (7) 
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where �(�|�) is the likelihood function of the distribution, �(�) is the prior probability distribution for the 
parameter � and ℎ(�|�) is the posterior probability distribution.  

2.2 Prior Information 

In Bayesian inference, a prior probability distribution is often called the prior of an unknown parameter � 
which is used to express the uncertainty about the parameter  � before the data is taken into consideration. 

Although, at times priors are chosen according to one’s subjective knowledge and belief that is why the 
Bayesian approach is sometimes called a subjective approach Dar et al. (2017). In this research work two 
types of prior distributions will be adopted namely; noninformative prior distribution (such as an extension 
of Jeffreys prior distribution, Hartigan Prior distribution and Uniform Prior distribution) and Informative 
prior distribution (such as Gamma Prior distribution and Inverted levy Prior distribution). 

2.2.1 Prior Elicitation of Kumaraswamy Distribution with Extension of Jeffrey’s Prior 
              Distribution 

Hudia and Huda(2014), proposed an extension of Jeffrey’s prior distribution of the form  

 �(�) ∝ ���(�)�
��

 (8) 

 where  

 �(�) = −�� �
�����(�|�)

��
� (9) 

 From (1),  

 

�(�|�) ∝ �exp{−��� (1 − ��)��}

���(�|�) ∝ ��� − ���(1 − ��)��

����(�,�)

��
∝

�

�
− ��(1 − ��)��

�����(�,�)

���
∝ −

�

��

 (10) 

 So, (9) becomes  

 �(�) =
�

��
 (11) 

 and the prior distribution for the Kumaraswamy distribution  can be expressed as  

 ��(�) ∝ �
�

�
�
��

 (12) 

 Remark 2.1: If c� = 1 in (12), we will have Jeffrey’s prior. That is  

 ���(�) ∝
�

�
 (13) 
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Remark 2.2:  If c� =
�

�
, we will have a Hartigan or modified Jeffrey’s prior. That is  

 ���(�) ∝ �
�

�
�
�/�

 (14) 

Remark 2.3: If c� = 0, we will have a Uniform prior U�0, k =
�

�
�. That is  

 ���(�) ∝ 1 (15) 

Thus, ��� = � where � is the constant of proportionality. 

2.2.2 Prior Elicitation of Kumaraswamy Distribution with Gamma Prior Distribution 

The prior density distribution for the parameter � is assumed to follow a Gamma distribution with parameters 
a and b. The density function is therefore expressed as  

 ��(�) =
��

�(�)
��������  (16) 

2.2.3 Prior Elicitation of Kumaraswamy Distribution with Inverted Levy Prior Distribution 

The prior density distribution for the parameter � is assumed to follow an Inverted Levy distribution of the 
form 

 ��(�) = �
�

��
��

�

���
��

�  (17) 

2.3 The Loss Functions consideration for Bayesian Estimation 

Loss  function was introduced into statistics by Abraham Wald in the middle of 20�� Century. This requires 
the selection of an estimator. In this paper, we considered the use of squared error loss function, Al-Bayyati’s 
loss function and Precautionary loss function for a better comparison of Bayes’ estimators.  

2.3.1 Squared Error Loss Function 

The Squared Error Loss Function (SELF) is expressed by  

 ���(��, �) = �(�� − �)� (18) 

The risk function for � under the SELF is  

 ����(��) = ∫
�

�
�(�� − �)�ℎ�(�|�) ∂�        � = 1,2,3 (19) 
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2.3.2 Precautionary Loss Function (PLF) 

The Precautionary Loss Function (PLF) is given as  

 ����(��, �) =
�(����)�

��
 (20) 

 The risk function for � under the PLF is  

 �����(��) = ∫
�

�

�(����)�

��
ℎ�(�|�) ∂�        � = 1,2,3 (21) 

2.3.3 Al-Bayatti’s Loss Function (ALF) 

The Al-Bayyati’s Loss Function  (ALF) is expressed by  

 ����(��, �) = ���(�� − �)�;        �� ∈ ℜ� (22) 

 The risk function  for � under the ALF is  

 �����(��) = ∫
�

�

�(����)�

��
ℎ�(�|�) ∂�        � = 1,2,3 (23) 

 where ��  is an estimate of the parameter � in all cases. 

3.0 Bayesian Estimation of parameter �  

3.1 Posterior Distribution of Kumaraswamy Distribution using the Extension of Jeffrey’s Prior 
              Distribution 

Following (7), the posterior distribution can be expressed as  

 ℎ�(�|�) =
�������

�

�
�
��

∫
�
� �������

�

�
�
�� ∂� 

 ℎ�(�|�) =
�������

�(������)
���������  (24) 

 which follows a Gamma distribution with parameters �(� − �� + 1, �) with ����(�) =
������

�
 and 

���(�) =
������

��
 . 

3.1.1 Bayesian estimate of parameter � under the Squared-Error Loss Function using Extension 
              of Jeffrey’s Prior Distribution 

Following (19), the risk function is written as  
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 �(��,��)(��) = ∫
�

�
(�� − �)�

�������

�(������)
��������� ∂� 

 �(��,��)(��) = ���� +
��(������)

���(������)
−

�����(������)

��(������)
 (25) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
(������)

�
 (26) 

  
3.1.2  Bayesian estimate of parameter �  under Al-Bayyati’s Loss Function using Extension of  
            Jeffrey’s Prior Probability 

 Following (23), the risk function is written as  

 �(��,��)(��) = ∫
�

�
���(�� − �)�

�������

�(������)
��������� ∂� 

 �(��,��)(��) =
����(���������)

����(������)
−

����(���������)

�(������)�
��

+
�(���������)

�(������)�
���� (27) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
(���������)

�
 (28) 

  
3.1.3   Bayesian estimate of parameter �  under Precautionary Loss Function using Extension of 
              Jeffrey’s Prior Probability 

 Following (21), the risk function is written as 

 �(��,��)(��) = ∫
�

�

�(����)�

��

�������

�(������)
��������� ∂� 

 �(��,��)(��) = ��� +
��(������)

�����(������)
−

���(������)

��(������)
 (29) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 

 ��(��,��) =
�(������)(������)

�
 (30) 

 
3.2   Posterior Distribution of Kumaraswamy Distribution using the Gamma Prior Distribution.  
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Following (7), the posterior distribution can be expressed as  

 ℎ�(�|�) =
��������������

∫
�
� ��������������

∂� 

 ℎ�(�|�) =
(���)���

�(���)
���������(���) (31) 

 which follows an Gamma distribution with parameters �(� + �, � + �) with ����(�) =
���

���
 and ���(�) =

���

(���)�
  

 
3.2.1  Bayesian estimate of parameter �  under Squared-Error Loss Function using Gamma Prior 
              Probability 

 Following (19), the risk function is written as  

 �(��,��)(��) = ∫
�

�
(�� − �)�

(���)���

�(���)
���������(���) ∂� 

 �(��,��)(��) = ���� +
��(�����)

(���)��(���)
−

�����(�����)

(���)�(���)
 (32) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
(���)

(���)
 (33) 

 
 

3.2.2   Bayesian estimate of parameter �  under Al-Bayyati’s Loss Function using Gamma Prior 
               Probability 

Following (23), the risk function is written as  

 �(��,��)(��) = ∫
�

�
���(�� − �)�

(���)���

�(���)
���������(���) ∂� 

 �(��,��)(��) =
����(������)

(���)���(���)
−

����(��������)

�(���)(���)����
+

�(��������)

�(���)(���)����
 (34) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
(������)

(���)
 (35) 

 
3.2.3   Bayesian estimate of parameter �  under Precautionary Loss Function using Gamma Prior 
              Probability 

 Following (21), the risk function is written as  
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 �(��,��)(��) = ∫
�

�

�(����)�

��

(���)���

�(���)
���������(���) ∂� 

 �(��,��)(��) = ���� +
��(�����)

��(���)��(���)
−

���(�����)

(���)�(���)
 (36) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
�(�����)(���)

(���)
 (37) 

 
3.3  Posterior Distribution of Kumaraswamy Distribution using the Inverted levy Prior 
              Distribution  
 

Following (7), the posterior distribution can be expressed as  

 ℎ�(�|�) =
�������

�
��

�
��
�

∫
�
� �������

�
��

�
��
� ��

 

 ℎ�(�|�) =
(��

�

�
)
��

�
�

�(��
�

�
)
���

�

����(��
�

�
) (38) 

which follows a Gamma distribution with parameters �(� +
�

�
, � +

�

�
) with ����(�) =

��
�

�
�

�

 and ���(�) =

��
�

�

(
�

�
)�

  

3.3.1   Bayes’ estimation under Squared-Error Loss Function using Inverted levy Prior 
              Distribution 
 

Following (19), the risk function is written as  

 �(��,��)(��) = ∫
�

�
(�� − �)�

(��
�

�
)��

�

�

�(��
�

�
)
���

�

����(��
�

�
)�� 

 �(��,��)(��) = ���� +
��(��

�

�
)

(��
�

�
)��(��

�

�
)
−

�����(��
�

�
)

(��
�

�
)�(��

�

�
)
  (39) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
(��

�

�
)

(��
�

�
)
 (40) 
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3.3.2   Bayes’ estimation under Al-Bayyati’s Loss Function using Inverted levy Prior Distribution 

Following (23), the risk function is written  as  

 �(��,��)(��) = ∫
�

�
���(�� − �)�

(��
�

�
)��

�

�

�(��
�

�
)
���

�

����(��
�

�
)�� 

 �(��,��)(��) =
����(��

�

�
)

(��
�

�
)�����(��

�

�
)
−

����(�����
�

�
)

�(��
�

�
)(��

�

�
)����

+
�(�����

�

�
)

�(��
�

�
)(��

�

�
)����

 (41) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
(�����

�

�
)

(��
�

�
)

 (42) 

3.3.3   Bayes’ estimation under Precautionary Loss Function using Inverted levy Prior 
               Distribution 

Following (21), the risk function is given as  

 �(��,��)(��) = ∫
�

�

�(����)�

��

(��
�

�
)��

�

�

�(��
�

�
)
���

�

����(��
�

�
)�� 

 �(��,��)(��) = ��� +
��(��

�

�
)

��(��
�

�
)��(��

�

�
)
−

���(��
�

�
)

(��
�

�
)�(��

�

�
)
 (43) 

 Now, on solving 
��(��,��)

���
= 0, we  obtained the Baye’s estimator �� as  

 ��(��,��) =
����

�

�
����

�

�
�

���
�

�
�

 (44) 

4.0 Monte-Carlo Study and Results 
 
In this reseach work,  samples where drawn from a Kumaraswamy distribution with parameters � = 0.5, 
� = 0.5, 1 and 1.5 with a sample sizes n = 100, 200, 500. The obtained results were repeated 10,000 times. 
Tables 1-3 displayed the estimates of parameter � of the Kumaraswamy distribution and the associated Mean 
Square Errors (MSEs) under each of the loss functions for different prior distributions. We set �� = 2, � = 

1 and 3, a = 1 and 3, b = 1 and 3 and �� = 0, 1 and 
�

�
. 
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Table 1: The Bayes (posterior) estimates of � and MSE under the Squared Error Loss Function 
  

n � 

Jeffrey’s 
Prior 

Hartigan 
Prior 

Uniform 
Prior 

Gamma Prior Inverted levy Prior 

c1 = 1 c1 = 
�

�
 c1 = 0 a = b = 1 a = b = 1 � = 1 � = 3 

100 0.5 0.5057 
(0.0027) 

0.5030 
(0.0026) 

0.5027 
(0.0027) 

0.4976 
(0.0025) 

0.4821 
(0.0023) 

0.5058 
(0.0026) 

0.5035 
(0.0025) 

1.0 1.0114 
(0.0104) 

1.0061 
(0.0103) 

1.0041 
(0.0102) 

0.9893 
(0.0096) 

0.9515 
(0.0086) 

1.0088 
(0.0106) 

1.0085 
(0.0102) 

1.5 1.5171 
(0.0235) 

1.5056 
(0.0231) 

1.5063 
(0.0232) 

1.4781 
(0.0217) 

1.4040 
(0.0186) 

1.5118 
(0.0233) 

1.4889 
(0.0216) 

200 0.5 0.5002 
(0.0013) 

0.5013 
(0.0013) 

0.5043 
(0.0013) 

0.4985 
(0.0012) 

0.4914 
(0.001) 

0.5032 
(0.0013) 

0.5021 
(0.0012) 

1.0 1.0044 
(0.0051) 

1.0130 
(0.0051) 

1.0112 
(0.0052) 

0.9932 
(0.0050) 

0.9762 
(0.0048) 

1.0050 
(0.0051) 

1.0005 
(0.0049) 

1.5 1.5085 
(0.0116) 

1.5030 
(0.0111) 

1.5160 
(0.0118) 

1.4890 
(0.0111) 

1.4512 
(0.0100) 

1.5050 
(0.0114) 

1.4942 
(0.0111) 

500 0.5 0.5009 
(0.0005) 

0.5001 
(0.0005) 

0.5023 
(0.0005) 

0.4997 
(0.0005) 

0.4966 
(0.0005) 

0.5012 
(0.0004) 

0.5004 
(0.0005) 

1.0 1.0019 
(0.0020) 

1.001 
(0.0020) 

1.0036 
(0.0020) 

0.9979 
(0.0019) 

0.9893 
(0.0019) 

1.0013 
(0.0020) 

0.9995 
(0.002) 

1.5 1.5041 
(0.0046) 

1.5017 
(0.0045) 

1.5049 
(0.0046) 

1.4958 
(0.0045) 

1.4802 
(0.0043) 

1.5032 
(0.0045) 

1.4981 
(0.0046) 

 

Table 2: The Bayes (posterior) estimates of � and MSE under the Al-Bayyati’s Loss Function when  c2 = 2 
 

n � 

Jeffrey’s 
Prior 

Hartigan 
Prior 

Uniform 
Prior 

Gamma Prior Inverted levy Prior 

c1 = 1 c1 = 
�

�
 c1 = 0 a = b = 1 a = b = 1 � = 1 � = 3 

100 0.5 0.5158 
(0.0028) 

0.5131 
(0.0027) 

0.5128 
(0.0027) 

0.5173 
(0.0028) 

0.5218 
(0.0027) 

0.5158 
(0.0027) 

0.5135 
(0.0026) 

1.0 1.0316 
(0.0108) 

1.0263 
(0.0108) 

1.0243 
(0.0106) 

1.0293 
(0.0104) 

1.0299 
(0.0101) 

1.0289 
(0.0110) 

1.0286 
(0.0106) 

1.5 1.5474 
(0.0244) 

1.5359 
(0.0241) 

1.5366 
(0.0242) 

1.5378 
(0.0235) 

1.5198 
(0.0218) 

1.5418 
(0.0243) 

1.5185 
(0.0224) 

200 0.5 0.5073 
(0.0013) 

0.5063 
(0.0013) 

0.5935 
(0.0013) 

0.5085 
(0.0013) 

0.5114 
(0.0013) 

0.5082 
(0.0052) 

0.5071 
(0.0013) 

1.0 1.0145 
(0.0051) 

1.0130 
(0.0051) 

1.0213 
(0.0053) 

1.0132 
(0.0052) 

1.0158 
(0.0053) 

1.0150 
(0.0052) 

1.0105 
(0.0050) 

1.5 1.5236 
(0.0118) 

1.5181 
(0.0114) 

1.5311 
(0.0119) 

1.5189 
(0.0011) 

1.5101 
(0.0108) 

1.5200 
(0.0116) 

1.5091 
(0.0114) 

500 0.5 0.5029 
(0.0005) 

0.5014 
(0.0005) 

0.5043 
(0.0005) 

0.5037 
(0.0005) 

0.5046 
(0.0005) 

0.5032 
(0.0005) 

0.5023 
(0.0005) 

1.0 1.0059 
(0.0020) 

1.0050 
(0.0020) 

1.0077 
(0.0020) 

1.0059 
(0.0020) 

1.0052 
(0.0020) 

1.0053 
(0.0020) 

1.0035 
(0.0020) 

1.5 1.5041 
(0.0046) 

1.5077 
(0.0045) 

1.5109 
(0.0046) 

1.5033 
(0.0045) 

1.5040 
(0.0045) 

1.5092 
(0.0045) 

1.5041 
(0.0046) 
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Table 3: The Bayes (posterior) estimates of � and MSE under the Precautionary Loss Function 
 

n � 

Jeffrey’s 
Prior 

Hartigan 
Prior 

Uniform 
Prior 

Gamma Prior Inverted levy Prior 

c1 = 1 c1 = 
�

�
 c1 = 0 a = b = 1 a = b = 1 � = 1 � = 3 

100 0.5 0.5808 
(0.0027) 

0.5055 
(0.0026) 

0.5052 
(0.0026) 

0.5098 
(0.0027) 

0.5144 
(0.0026) 

0.5083 
(0.0026) 

0.5060 
(0.0025) 

1.0 1.0165 
(0.0105) 

1.0112 
(0.0104) 

1.0091 
(0.0103) 

1.0143 
(0.0101) 

1.0152 
(0.0097) 

1.0139 
(0.0107) 

1.0135 
(0.0103) 

1.5 1.5246 
(0.0237) 

1.5131 
(0.0234) 

1.5118 
(0.0235) 

1.5154 
(0.0228) 

1.4981 
(0.0212) 

1.5193 
(0.0235) 

1.4963 
(0.0218) 

200 0.5 0.5035 
(0.0013) 

0.5026 
(0.0013) 

0.5068 
(0.0013) 

0.5048 
(0.0013) 

0.5077 
(0.0012) 

0.50443 
(0.0013) 

0.5034 
(0.0012) 

1.0 1.0070 
(0.0050) 

1.0055 
(0.0050) 

1.0106 
(0.0052) 

1.0057 
(0.0052) 

1.0083 
(0.0052) 

1.0075 
(0.0051) 

1.0030 
(0.0049) 

1.5 1.5123 
(0.0116) 

1.5068 
(0.0112) 

1.5177 
(0.0114) 

1.5077 
(0.0114) 

1.4990 
(0.0106) 

1.5088 
(0.0114) 

1.4980 
(0.0112) 

500 0.5 0.5014 
(0.0005) 

0.5014 
(0.0005) 

0.50278 
(0.0005) 

0.5022 
(0.0005) 

0.5031 
(0.0005) 

0.5017 
(0.0005) 

0.5008 
(0.0005) 

1.0 1.0029 
(0.0020) 

1.0020 
(0.0020) 

1.0046 
(0.00200) 

1.0029 
(0.0020) 

1.0023 
(0.0020) 

1.0023 
(0.0020) 

1.0005 
(0.0020) 

1.5 1.5056 
(0.0046) 

1.5032 
(0.0045) 

1.5064 
(0.0046) 

1.5033 
(0.0045) 

1.4996 
(0.0045) 

1.5047 
(0.00451) 

1.4996 
(0.0046) 

 

6.0 Discussion 

The various estimates of the shape parameter � of the Kumaraswamy distribution provided by the Bayesian 
estimators at five different chosen priors over varying sample sizes are reported in Tables 1 to 3. For each 
parameter estimate reported, its corresponding MSE was determined as provided in the parenthesis.  

All the five Bayesian estimators considered performed creditably well by providing good estimates of the 
shape parameter � of the Kumaraswamy distribution at different chosen sample sizes under the three loss 
functions considered. However, further assessment of the performances of these estimators showed that all 
these estimators yielded the best results under the square error loss function. 

Without loss of generality, it can be observed from various results in Tables 1 to 3 that the performances of 
all the Bayesian estimators improved tremendously as the sample size increases irrespective of the type of 
loss function adopted. In fact, it is quite obvious that all the five Bayesian estimators yielded similar results 
under the three loss functions considered at large sample sizes. 

7.0 Conclusions 

This research work examined the efficiency of Bayesian estimators of the shape parameter of the 
Kumaraswamy distribution under different prior considerations and at three chosen loss functions. 

Various results showed that all the prior distributions assumed on the parameter were quite good under the 
three loss functions considered. However, it was observed that the performances of the Bayesian estimators 
were in their best form under the square error loss function under which the MSEs of all the estimators were 
relatively smaller especially at small sample sizes.  

Generally, it can be observed that the Bayesian estimates under the informative prior distributions proved to 
be better than those provided under the noninformative prior distributions. Specifically, the results obtained 
under the Inverted levy prior distribution were quite more efficient than others, especially under the SELF. 

It can be concluded that the Bayesian estimators of the shape parameter of Kumaraswamy distribution under 
the five chosen priors provided good estimates of the parameter at all the three loss functions considered. 
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However, the results provided under the Inverted levy prior (an informative prior) using the SELF appear 
slightly better than those reported under the noninformative priors. It can, therefore, be recommended that 
Bayesian estimation of the shape parameter of the Kumaraswamy distribution is better considered an 
informative prior for the associated gains in relative efficiency. 
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