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Abstract 

In this work, we employed Bayes’ Factor approach to detect the point at which change occurred in 
sequence of normally distributed random variables with an application to data on annual flow of River Nile 
at Aswan, Egypt. The annual flow of River Nile was modelled by Gaussian density with non-informative 
prior probability distribution specified for both the mean and variance of the distribution before and after 
the change-point. The respective posterior distributions were determined via Markov Chain Monte Carlo 
method based on the simulated and real life data. Various results obtained from simulation studies showed 
that the Bayesian method developed was capable at detecting the point at which change actually occurred 
in normally distributed data sets. In the real life data, the method was able to detect the point(period) at 
which the volume of water in the River Nile changed which was the year 1898 as earlier reported in the 
literature.    

Keywords:   Change point analysis, Bayesian method, change in mean level, non-information prior 
distribution, Gibbs Sampling, Posterior Distribution 

1.0 Introduction  

Change-point anaysis is a statistial method used to detect if there is a change in the statiscal properties of a 
statistical distribution. There are a lot of examples where we can detect sudden break in a timeseries dataset 
such as Nigeria Stock market, climatic variables (such as rainfall, relative humidity, temperature, etc), 
manufacturing of products (when process is not in control), and so on. Consider the amount of rainfall in a 
particular region in Nigeria, there is a possibility of  observing a time where the annual mean of amount of 
rainfall for a given year is more/less than the previous years. This changes may also have impact on the 
variances or not.  The change-point model can be linked to the statiscial quality control application, where 
the manufacturer tends to detect if the process is in control or out of control based the available 
information.  

Change-point models have been applied to different fields which includes Bioinformatics (Erdman and 
Emerson , 2008), Finance, Fault detection and reliability (Spokoiny, 2009), Signal detection, Surveillance, 
Security System, Meteorology and Climatology (Jaxk et al., 2007), Environmental Studies (Mohammad-
Djafari and Olivier, 2007), Insurance, Econometric Time Series, Macro-sociological process, hydrology 
(Yahya et al, 2017), Historical  changes (Isaac and Griffin, 1989),  Detection of Malware software (Yan et 
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al., 2008), Oceanography (Killick et al., 2010), Medicine , Finance, Economics (Sangyeol et al., 2006) and 
Gynecology (Erdman and Emerson, 2008) among others. 

Detecting and locating point(s) where change(s) occurred have been under studies for decades under the 
name “Change-point detection” with a number of methods proposed for detecting abrupt change(s) in a 
given set of data. These methods comprise of both parametric and non-parametric statistical methods.  The 
change-point analysis started in 1954 when Page published his landmark articles, Page (1954) and Page 
(1955) using the CUMSUM approach to detect where and when a change occurred in the series of 
independent normally distributed datasets. Since then, many works on change-point concepts have 
emerged.  

Perreault et al. (2000) developed a single change-point model to detect changes in the series of a 
multivariate Gaussian data using the Bayesian approach. He assumed informative prior distributions for the 
parameter of interest and adopted the use of Gibbs sampling MCMC to obtain the estimates of the 
parameters of interest. Pandya and Pandya (2011) proposed a change point model on discrete Maxwell 
distribution and detect the point at which the abrupt change occurred using Bayesian methods.  The loss 
functions such as the Squared Error Loss Function, Asymmetric Loss Function, General Entropy Loss 
Function and Linex Loss Function were used to examine the goodness of the estimated values of the 
parameters of interest. Nasiri et al. (2014), adopted the use of Bayesian Loss Functions such as 
Precautionary Loss Function and others to detect change-point and estimate the parameters of interest for 
any sequence of independent observations  that follow Poisson and Geometric distributions. 

Son and Seong (2005) developed Bayesian single change-point model in mean and/or covariance of a 
multivariate Gaussian series by using a non-informative prior distributions. In his work, he employed 
arithmetic intrinsic Bayes factor, geometric intrinsic Bayes factor and median intrinsic Bayes factor 
proposed by Berger and Pericchi (1996, 1988) to detect change-point in the data and estimate the 
parameters of interest.  

In this study, the aim is to develop a single change-point model for determining the period of change in the 
annual flow of water in River Nile using Bayes’ factor methodology. 

2.0 The Bayes’ Factor 

Bayesians view hypothesis testing as model comparison (Berger and Pericchi, 1996; Kass and Raftery, 
1995). Arguably, the issue is not whether or not a particular hypothesis is true or not, but whether a model 
described under one hypothesis is preferable to one described under another. The model comparison 
method was developed by Jeffreys (1939, 1961) to test which of the hypotheses best describe the sequence 
of an observation. In the study, he obtained a single value known as Bayes factor, which is regarded as the 
ratio of the marginal likelihood of the data in the hypothesis 1(��) and hypothesis 2 (��). Kass and Raftery 
(1995) considered observations x with an  assumption that it belongs to one of the two hypotheses �� and 
�� with  probability density Pr(�/��) or Pr(�/��). This can be expressed as 

                                   ��: � = �� vs.  ��: � = �� with ��, �� ∈ � 

The prior probabilities are Pr(��) and Pr(��) = 1 − Pr(��). We obtained the posterior distribution for 
the parameter of intrest given the data for each of the hypotheses denoted as  Pr(��/�) and Pr(��/�) 
using the Bayes’ theorem as, 

 Pr(��/�) =
��(�/��)��(��)

∑�
�� � ��(�/��)��(��)

,            (� = 1,2) (1) 

 However for many applications such as bayesian testing hypothesis on the existence of change-point, it is 
valuable to use the odds in favour of �� against �� (Davison, 2003; Congdon, 2006) defined by  

 
��(��/�)

��(��/�)
=

��(�/��)

��(�/��)
×

��(��)

��(��)
                                       (2) 

which is the multiplication of the prior odds by the bayes factor (����). The we have that; 

 ���� =
��(�/��)

��(�/��)
                                                     (3) 
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 Which implies that; 

 ���� =
 ����������  ��  ��������  ����  �����  �� 

 �������  ����������  ��  ��������  ����  �����  �� 
 

The simplest case is when both hypotheses are simple, in which case, ���� equals the likelihood ratio in 
favour of ��. However, both hypotheses involve parameters ( say �� and ��, the densities Pr(�/��), i 
=1,2, are obtained by integrating over parameter space �,  

 Pr(�/��) = ∫ Pr(�/��)Pr(��)d��                                     (4) 

where:  �� is the parameter under ��; Pr(��|��) is the  prior density defined on ��; Pr(�/��, ��) is the 
density of y given  ��  and Pr(�/��) is the marginal probability distribution 

Note that,when computing ����, all the constants appearing in the definition of a likelihood (Pr(�|��, ��) 
must be retained. ���� can be expressed in the form  

 ���� =
��(�/��)

��(�/��)
=

∫��
��(�/��)��(��)���

∫��
��(�/��)��(��)���

 (5) 

The 
21BF  expresed in  (5) is often used to summarize the evidence for �� 2  compare to ��, with the 

following heuristic scale below    

Table  1: Rough Interpretation of Bayes factor 21BF  given by Davison (2003) and Congdon (2006) 

21BF  2 21log BFe
 Interpretation 

Under 1 Negative Supports model 1 
1 - 3 0 - 2 Weak support for model 2 

3 - 20 2 - 6 Support for model 2 

20 - 150 6 - 10 Strong evidence for model 2 

Over 150 Over 10 Very strong support for model 2 

 

The 
21BF  is similar to the Likelihood Ratio Test (LRT). The differences beteween 

21BF  and LRT is that 

the parameters are integrated sinstead of  maximizing the parameters under each model. 21BF  is also 

known as  Bayesian Likelihood Ratio (BLR) which replaces the likelihood with the marginal under both 

model. This contrasts with the interpretation of a likelihood ratio test whose null 
2  distribution for nested 

models would depend on the difference in their degree of freedom (Jeffreys , 1939; 1961; Kass and Raftery, 

1995; Davison, 2003; Congdon, 2006). The log Bayes factor 
21log2 BF  is sometimes called the weight of 

evidence.  

3.0 Bayes’ Factor of a Normal distribution at an Unknown Change-point � 

Consider the sequence of independent random variables, ��, ��, … , ��from a Normal distribution. The 
objective of this paper is to test the hypotheses of the form  

 
                                                     ��: ��~ �(�, ��) � = 1,2, ⋯ , � (6) 

 
under the assumption that there is no change-point in mean of a normally distributed random variables, that 
is � = � with  �(�, ��) against the alternative that; 

                                       ��: ��~ �
�(��, ��)                        � = 1,2, ⋯ , �

�(����, ��) � =  � + 1, � + 2, ⋯ , �
 (7) 

under the hypothesis ��, we assumed that a change occurred in mean of a normally distributed random 
variables  at point ��� observations, with � < �, which is the value that indicate the point at which the 
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change occurred. The first � observations (��, ��, ��, … , ��) come from a Normal distribution with 
parameters  �(��, ��) and the remaining � − � observations (����, ����, ����, … , ��) come from another 
Normal distribution with parameters  �(����, ��). Where (��, ����) ∈ �. 

 ���� =
∫ ∫ ∫ �(��,����,��|�)��(��,����)��(��)�����������

∫ ∫ �(�,��|�)��(�)��(��)�����  (8) 

where �(��, ����, ��|�) is the likelihood of the data, Pr(��, ����) is the prior distribution of means and 
Pr(��) is the prior distribution for the variance under the  hypothesis H1 and  �(�, ��|�) is the likelihood 
function of the data, Pr(�) is the prior probability  distribution of means and Pr(��) is the prior probability 
distribution for the variance under the  hypothesis H0.  

The likelihood function for the observations ��, ��, ⋯ , �� under the null hypothesis (H0) can be expressed 
as 

            ��(�|�, ��) =  ∏ �(�, ��)�
��� =  �

�

��
�

�

�
�

�

���

�

�
�

�
�

��� ������(�̅��)�
  (9) 

where   �� =
∑(���̅)�  

�
 and �̅ =

∑ �

�
 . 

The prior distribution under the null hypothesis H1 is 

                    Pr (�, ��) = ��(��)��(�|��) = �
�

��� �
�

�����

�

�
�

�
�

�����

 (10) 

The posterior distribution under the null hypothesis (H1) can be obtained by combining (9) and (10)  

                               ��(�, ��|��) =  �
�

��
�

�

�
�

�

���

�

�
�

�
�

��������
�

�
���

��� (���)�

                            (11) 

The marginal posterior density for the null hypothesis is 

                                               ��(�|��) =   �
�

��
�

�

�
 �

�

���
�

�

� �(�)

��                 (12) 

where  � = ���; � =
��

�

���
;  � =  

�

�
 

Also, for the alternate hypothesis ��, which claims that there is an existence of a single change-point model 
by (7), we have that 

��(�|��, ��, ��, ��) =  � �(��, ��)

�

���

� �(��, ��)

�

�� ���
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       (13)     

where: 

�̅� = �−1 � �

�

�=1

;     �̅� =  (� − �)−1 � �

�

�=(�+1)

;   ��
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The prior distribution under the hypothesis H1 is 

��(��, ����, ��) = ��(��)��(��|��)�(����|��) = �
�
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        (14)     

The posterior distribution under the alternate hypothesis (H2) can be obtained by combining (13) and (14)  
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The marginal posterior density is 

     ��(�|�, ��) = �
�

��
�

�

�
 �

�

���
�

�

�
�

�

�����
�

�

� �(��)

����                                     (16) 

where �� = ���
� + (� − �)��

� ;   �� =  
�

�
+ 2;  �� =

���
�

���
 ;   ���� =

(���)����
�

�����
 . 

3.1 Gibbs Sampler: A MCMC Approach 

To obtain the parameters of intrest from the posterior density (16) is not always possible due to the number 
of parameters involved. So, its quantities  is difficult to evaluate analytically (i.e. we may not be able to 
integrate out some or all of the variables). One of the easiest way to overcome these difficulties in obtaining 
the estimate of the parameters of intrest is through the Gibbs sampling Markov Chain Monte Carlo 
(MCMC) method Gelman et al. (2004). In this study, computational techniques based on MCMC 
algorithms was used to drawout samples from posterior density (16)  in order to obtain  the estimates of the 
following parameters ��, ����, � and ��. 

The full conditional distribution form all the parameters can be written as: 

                                             ��(��|����, ��, �, ��)~ � ���|��,
��

���
�        (17) 

��(����|��, ��, �, ��)~ � �����|����,
��

�����
�        (18) 

��(��|��, ����, �, ��)~ ��(��|��, ��)             (19) 

         ��(�|��) ∝ �
�

���
�

�

�
�

�

�����
�

�

� �(��)

����                                (20) 

4.0 Data Analysis 

In this section, we provide two applications of Bayesian change-point techniques to determine if indeed a 
change as occurred or not and at what period.  We applied this approach on a simulated dataset and 
validates its performance on real life dataset.  We presented some diagnosis tools to test for convergence of 
the MCMC generated samples for the obtained parameters. This convergence was verified using Gweke’s 
(1992), Gelman and Rubin’s (1992) and Heidelberger and Welsh’s (1983) test criterion.  

 In order to perform the convergence diagnosis, we generated three sequences with 100,000 elements. 
10,000 burn-in values were discarded with thinning of 50 observations.  The estimate of the parameters 
��, ����, �� and � are presented in Tables 1 and 2.  

4.1 Analysis of Simulated Data: Data Set I 

In order to detect a change-point in a sequence of a normally distributed dataset, 100 random samples were 

simulated from a Gaussian density as specified by H2 below with a point of change located at �
��

�
�

��

 

observation of the sequence. 
 

��: ��~ �
�(14, 7�)  � = 1,2, ⋯ , 40      

�(46, 7�) � =  41,42 ⋯ , 100
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Fig. 1: Timeplot of the simulated dataset 

 
Fig. 2: Bayes’ factor plots for the hypotheses H1 and H2 for the simulated dataset 

 
Table 1:  Posterior quantities for the parameters ��, ���� and �� for the single point change-point model 

for the simulated dataset 

Parameter Mean SD 25% 50% 75% 97.5% 
��=�� 13.85 1.08 11.24 13.57 14.25 15.69 

�� = ���� 46.78 0.91 44.35 46.09 46.72 47.99 
�� 32.92 1.43 29.77 32.55 33.51 35.55 
� 7.08 0.52 6.09 7.07 7.42 8.17 

 
Table 2: MCMC diagnostics for the simulated data set 

Parameter 
Max. 

Autocorrelation 
Lag 50 

Heidelberger and 
Welsh 

(Stationary Test) 

Gelman and Rubin 
Shrink Factor 

Max. Of the 
absolute value of  

Gweke’s Criterion 

��=��  0.004 Passed 1.00  ; 1.00 0.06 
�� = ���� 0.006 Passed 1.00 : 1.01 1.69 

�� 0.019 Passed 1.01 : 1.05 0.42 
� 0.011 Passed 1.00 : 1.00 0.21 
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Fig 3: MCMC Diagnostic Plot for simulated dataset 

4.2 Analysis of Real life Data: Data Set II - Annual flow of River Nile 

A single change-point model was developed to detect a change in annual flow of River Nile at Aswan in 
Egypt from the year 1871to 1980. The data were reported and used by Cobb (1987).  

Fig. 4 shows the pattern of the annual flow of River Nile from the year 1871to 1980.  Fig. 5 shows the 
Change-point plot for the annual flow of River Nile which shows that change in the river volume occued 
and was detected in the year 1898 which literally confirms the claim by Cobb (1978). Fig. 6 provided the 
MCMC diagnosis of the data. 

 
Fig 4: Timeplot of the annual flow of River Nile (Cobb, 1978). 
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Fig 5: Bayes Factor plot for the annual flow of River Nile. A change was detected in the year 1898. 

 
Table 3:  Posterior quantities for the parameters ��, ���� and �� for the single point change-point model 

for annual flow of River Nile 

Parameter Mean SD 25% 50% 75% 97.5% 

��=�� 1028.6 26.9 975.3 1028.5 1047.0 1077.0 
�� = ���� 828.2 15.8 795.0 828.3 839.1 856.6 

�� 18417 2970 13599.5 17950.0 20182.5 25212.0 
� -200.4 29.4 29.4 -200.2 -180.6 1282.0 

 
Table 4:  MCMC diagnostics for the flow of River Nile 

Parameter 
Max. 

Autocorrelation 
Lag 50 

Heidelberger and 
Welsh 

(Stationary Test) 

Gelman and Rubin 
Shrink Factor 

Max. Of the 
absolute value of  

Gweke’s Criterion 

��=�� 0.050 Passed 1.00  ; 1.02 1.13 
�� = ���� 0.017 Passed 1.00 ; 1.01 0.76 

�� 0.010 Passed 1.00 ; 1.02 0.52 
� 0.021 Passed 1.00 ; 1.03 -1.09 
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Fig 6: MCMC Diagnostic Plot for flow of River Nile 

5.0 Discussion of Results  

Figs 2 and 5 are the plots of Bayes’ factor against time for both the hypotheses 1 and 2 and we deduced that 
indeed a change-point was actually detected at point 40 and 28 (1898) for both the simulation and the real 
life datasets respectively.  

As it can be observed from Tables 1 and 3, the autocorrelation is very low for lag size 50. The estimate of 
the parameters in each of the chains passed the Heidelberger and Welch’s stationarity test. Also, for 50% 
and 97.5% quantiles the Gelman and Rubin’s shrink factors for each of the three chains is around 1.00.  

Gelman and Rubin (1992) stated that if the shrink factors for 50% and 97.5% quantiles are approximately 
1.0, then the posterior quantities converged. The Geweke’s maximum z-scores are very moderate which 
also confirms that the obtained posterior quantities converged.  

Figs. 3 and 6 present the graphical summary of the results at different iterations for both simulated and real 
life data before the change and after the change has occurred at point �.The parameter traces for each of the 
generated sequences are displayed below the panels. The obtained posterior density for each of the 
parameters are shown at the top left hand side panels.  Tables 2 and 4 present the summary of quantities 
that help to describe the features of the posterior distributions of  ��, ���� and �� for both the simulation 
and the real life datasets.  

6.0 Conclusions 

In this paper, we developed a single change-point model for normally distributed dataset under the non-
informative using Baye’s Factor techniques. The Bayesian method was used to detect the time at which 
there is a shift in timeseries dataset and this was employed on both the simulated and real life datasets. The 
focus of this work is to develop a change-point model for a normally distributed dataset using Bayesian 
method, rather than a subjective approach. 
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